1. J. E. Hanson, Approximate isomorphism of metric structures. Mathematical Logic Quarterly, September 2023,
  2. G. Conant, K. Gannon, and J. Hanson, Keisler measures in the wild. Model Theory 2, no. 1 (2023): 1–67.
  3. J. Hanson, T. Ibarlucía. Approximate isomorphism of randomization pairs. Confluentes Mathematici, Volume 14 (2022) no. 2, pp. 29-44. doi : 10.5802/cml.85.
  4. J. Hanson, Metric spaces are universal for bi-interpretation with metric structures. Ann. Pure Appl. Logic (2023),
  5. G. Conant and J. Hanson, Separation for isometric group actions and hyperimaginary independence. Fundamenta Mathematicae 259 (2022), 97-109,
  6. J. Hanson, Analog reducibility. Journal of Logic and Computation, 2021, exab036,
  7. W. Cottrell, J. Hanson, A. Hashimoto, A. Loveridge, and D. Pettengill, Intersecting D3-D3’-brane system at finite temperature. Phys. Rev. D, 95, 044022 (2017).
  8. W. Cottrell, J. Hanson, and A. Hashimoto, Dynamics of N = 4 supersymmetric field theories in 2 + 1 dimensions and their gravity dual. J. High Energ. Phys. 2016, 12.


  1. J. E. Hanson, Bounded ultraimaginary independence and its total Morley sequences. Accepted at Model Theory. arXiv.
  2. J. Hanson, Strongly Minimal Sets and Categoricity in Continuous Logic. Accepted at Memoirs of the AMS. arXiv.


  1. G. Conant, K. Gannon, and J. E. Hanson, Generic stability, randomizations, and NIP formulas. arXiv.
  2. J. Hanson, A simple continuous theory. arXiv.
  3. J. E. Hanson, Bi-invariant types, reliably invariant types, and the comb tree property. arXiv. 
  4. J. Hanson, Some semilattices of definable sets in continuous logic. arXiv.
  5. J. Hanson, A metric set theory with a universal set. arXiv.
  6. J. Hanson, Topometric characterization of type spaces in continuous logic. arXiv.
  7. J. Hanson, Approximate Categoricity in Continuous Logic. arXiv.

In Preparation

  1. K. Gannon and J. E. Hanson, Model theoretic events. arXiv.
  2. A. Bauer, J. E. Hanson, The Countable Reals. arXiv.


  1. J. Hanson, Indiscernible Subspaces and Minimal Wide Types. (Absorbed into Strongly Minimal Sets and Categoricity in Continuous Logic.) arXiv.
  2. Continuous Logic for Discontinuous Logicians.