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Abstract. Motivated by ideas from the model theory of metric structures, we introduce
a metric set theory, MSE, which takes bounded quantification as primitive and consists

of a natural metric extensionality axiom (the distance between two sets is the Hausdorff
distance between their extensions) and an approximate, non-deterministic form of full

comprehension (for any real-valued formula φ(x, y), tuple of parameters a, and r < s,

there is a set containing the class {x : φ(x, a) ≤ r} and contained in the class {x :
φ(x, a) < s}). We show that MSE is sufficient to develop classical mathematics after the

addition of an appropriate axiom of infinity. We then construct canonical representatives

of well-order types and prove that ultrametric models of MSE always contain externally
ill-founded ordinals, conjecturing that this is true of all models. To establish several

independence results and, in particular, consistency, we construct a variety of models,

including pseudo-finite models and models containing arbitrarily large standard ordinals.
Finally, we discuss how to formalize MSE in either continuous logic or  Lukasiewicz logic.

Introduction

Ever since the discovery of the inconsistency of full comprehension principles at the turn
of the last century, there have been various efforts to rescue the idea and formulate systems
in which the entire domain of discourse is meaningfully represented as an element of the
domain of discourse itself.

Neo-näıve set theories commonly take one of two approaches to repairing full comprehen-
sion. One is to weaken the comprehension principle while maintaining full classical logic,
and the other is to weaken the underlying logic while maintaining the full comprehension
principle. Extensionality is often weakened or abandoned entirely. While there have been
many investigations into such theories, there are approximately three in particular we will
be occasionally comparing to ours: Quine’s New Foundations, NF, and Jensen’s “slight
(?) modification” thereof, NFU; the positive topological set theory GPK+, studied most
prominently by Esser; and Cantor- Lukasiewicz set theory, originally isolated by Skolem but
named by Hájek, which consists simply of the full comprehension scheme interpreted in
the [0, 1]-valued  Lukasiewicz predicate logic. NF(U) and GPK+ fall under the first approach
mentioned above, and Cantor- Lukasiewicz set theory, abbreviated C L0 by Hájek, falls under
the second. NF and GPK+ have full extensionality, but C L0 is entirely inconsistent with it
and NFU weakens it by allowing urelements. To keep this introduction short, we will point
the reader to [11] for an overview of NF(U) and GPK+ and to [15, Ch. 4.5] for an overview
of Cantor- Lukasiewicz set theory. In particular, Hájek’s result [15, Th. 4.17] that C L0 has
no ω-models will be relevant, in that we will find a similar real-valued failure of induction
in our theory (Theorem 4.10), although for us the failure may occur at arbitrarily large
ordinals (Theorem 6.15), rather than necessarily at ω.
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In this paper, we introduce a new set theory, MSE, which takes a combined approach
to repairing comprehension: We weaken the comprehension scheme and weaken (or, more
charitably, generalize) the underlying logic by working in a real-valued logic. For the sake
of presentation, we will work in a slightly bespoke formalism, heavily based on first-order
continuous logic, that capitalizes on the fact that our theory is a theory of sets that are
actually sets of elements, rather than arbitrary [0, 1]-valued predicates on some domain. In
particular, our formalism will take bounded quantification as primitive, which is not possible
to do in continuous logic, introduced in its modern form in [1].

Models of MSE are triples (M,d,⊏−), where (M,d) is a complete metric space and ⊏− ⊆M2

is a closed binary relation. Such a structure is a model of MSE if it satisfies a strong metric
form of extensionality and a weak approximation of comprehension. The strong form of
extensionality, which we refer to as H-extensionality, requires that for any a, b ∈M , d(a, b) =
dH({x : x ⊏− a}, {x : x ⊏− b}), where dH is the Hausdorff metric on sets (Definition 1.2). We
refer to H-extensional structures (M,d,⊏−) as metric set structures.

The weak form of comprehension is the following principle: For any real-valued formula
φ(x, ȳ), any real numbers r < s, and any tuple of parameters ā ∈ M , there is a set b ∈ M
such that for any c, if φ(c, ā) ≤ r, then c ⊏− b and if c ⊏− b, then φ(c, ā) < s (Definition 1.7).
Crucially, we make no guarantees about membership of those c’s for which φ(c, ā) falls in
the gap between r and s and so in this sense the principle is non-determinisitc.

The word that we find most accurately captures this principle is excision, the idea being
that we are only able to cut out a desired set somewhat crudely. From this we get the
initialism MSE, for Metric Sets with Excision. Of course the nature of this principle depends
entirely on what is meant by ‘real-valued formula,’ which is formalized in Section 1.2, but the
crucial fact is that these formulas are automatically uniformly continuous with regards to the
metric. In particular, we have no direct access to the relation ⊏− as a {0, 1}-valued predicate
and instead can only use it in instances of bounded quantification, such as infy⊏−z φ(x, y).

After defining MSE and developing some techniques for constructing particular sets, we
will establish that MSE is sufficiently strong and expressive by showing that it (with an
axiom of infinity) interprets classical TSTI1 (or, equivalently, full ωth-order arithmetic or
the theory of a Boolean topos with a natural numbers object), which is well known to be
more than sufficient for everyday mathematics. In particular, we do this by considering
uniformly discrete sets, which are better behaved than arbitrary sets in models of MSE. We
then build canonical representatives of internal well-order types in models of MSE (which
we call ordinals). We show that MSE has no ultrametric β-models (i.e., models that are
correct about well-foundedness) by showing that the class of ordinals of any such model M
admits an external map s to (0, 1] that is non-increasing and has dense image (implying
that the preimage of (0, 1) under s has no least element). When we eventually construct
models of MSE by using a non-standard modification of the standard construction of models
of GPK+, we show that they can have arbitrarily large standard ordinals (Theorem 6.15).
This is of course similar to the situation with NFU, which has no true β-models yet can have
arbitrarily large well-founded parts, but the mode of failure is more conceptually similar to
the mechanism that prevents C L0 from having ω-models in that it involves the difficulty of
robustly formalizing induction for real-valued predicates. We also construct a pseudo-finite
model of our theory (without infinity). This establishes that MSE without infinity has an
incredibly low consistency strength, lower than Robinson arithmetic, in contrast to NFU

1See [5, Sec. 1.1.2] for the definition of TSTI.
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and GPK+ without infinity.2 We also show that any complete metric space of diameter at
most 1 can be embedded as an internal set of Quine atoms in a model of MSE, which in
particular shows that not all models of MSE are ultrametric. Nevertheless, all models we
are able to construct admit the map s as before, so we conjecture that this is in fact always
the case.

Finally, we show how to formalize our theory in either continuous logic or  Lukasiewicz
predicate logic. In these contexts, we consider structures (without a given metric) of the
form (M, e), where e is a binary [0, 1]-valued predicate on M . The intended interpretation
of e(x, y) is the quantity infz⊏−y d(x, z). Our strong form of extensionality ensures that the
metric d(x, y) can be recovered from e(x, y) by the formula de(x, y) := infz |e(z, x)−e(z, y)|.
The H-extensionality axiom now takes the form

sup
xy

|e(x, y) − inf
z

min(de(x, z) + 2e(z, y), 1)| = 0,

and the axiom scheme of excision consists of

sup
ȳ

inf
z

sup
x

max(min(e(x, z),−φ(x, ȳ)),min(εφ − e(x, z), φ(x, ȳ) − 1)) ≤ 0

for each restricted Le-formula φ(x, ȳ), where εφ is a certain rational number directly com-
putable from φ. We show that models of the above theory are precisely pre-models of MSE
in the sense that the completion with regards to de yields a model of MSE (by taking x ⊏− y
to be the relation e(x, y) = 0). Furthermore, all models of MSE arise in this way.

In  Lukasiewicz logic, we use the predicate3 x ϵ̂ y instead of e(x, y), with the intended
meaning being that (x ϵ̂ y) = 1 − e(x, y). The H-extensionality axiom is directly translated
as

∀x∀y(x ϵ̂ y ↔ ∃z(x =e z & z ϵ̂ y & z ϵ̂ y)),

where x =e y is the formula ∀z(z ϵ̂ x ↔ z ϵ̂ y) (which is the same as 1 − de(x, y)), and the
axiom scheme of excision is shown to be equivalent to the scheme

∀ȳ∃z∀x(x ϵ̂ z ∨ (¬φ& ¬φ& ¬φ)) ∧ ((¬x ϵ̂ z & · · · & ¬x ϵ̂ z︸ ︷︷ ︸
6·#φ times

) ∨ (φ& φ& φ))

for each  Lukasiewicz formula φ(x, ȳ), where #φ is the number of instances of ϵ̂ in φ.

1. Specification of MSE

1.1. H-extensionality and metric set structures. The structures we will be considering
will be of the form (M,d,⊏−), where (M,d) is a complete metric space, and ⊏− ⊆ M2 is a
closed binary relation. As is suggested by the notation, ⊏− is meant to be interpreted as a
set membership relation, and, as such, we would like for it to be extensional. Obviously we
could just require extensionality of ⊏− as a binary relation in the standard sense, but for a few
different reasons, we will opt to place a stronger condition on ⊏−. To define this condition,
recall one of many equivalent definitions of the Hausdorff distance between subsets of a
metric space:

Definition 1.1. The Hausdorff distance between A and B, written dH(A,B), is the unique
smallest element of [0,∞] such that for any r > dH(A,B),

2NFU’s consistency strength is strictly between Robinson arithmetic and PA. GPK+ is equiconsistent
with full second-order arithmetic.

3The hat in ϵ̂ is merely to help visually distinguish it from the four other epsilon-like symbols in this
paper, ∈, ⊏−, e, and ε. We never use the symbol ϵ, and ϵ̂ is only used in the last section of the paper. ∈
always refers to standard set-theoretic membership and ε is always a real number.
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• for every a ∈ A, there is a b ∈ B such that d(a, b) < r, and
• for every b ∈ B, there is an a ∈ A such that d(a, b) < r.

On the full power set of M , dH is an extended pseudo-metric, but on the collection of
close subsets of M , it is an extended metric. We will be concerned exclusively with [0, 1]-
valued metrics. In this context, it makes sense to modify the above definition to take dH
to be [0, 1]-valued as well. This only changes the distance between the empty set and non-
empty sets. In particular, dH(∅, A) = 1 for any non-empty A. This is the definition of the
Hausdorff distance we will actually use.

The form of Definition 1.1 above makes it clear that dH is a direct metric generalization
of extensional equality of sets. A = B if and only if for every a ∈ A, there is a b ∈ B such
that a = b and for every b ∈ B, there is an a ∈ A such that a = b. In this way, we take as
our extensionality axiom a direct translation of the statement ‘A = B if and only if A and
B are coextensive.’

Definition 1.2. Given a metric space (M,d) and a binary relation ⊏− ⊆ M2, we say that
⊏− is H-extensional if for any a, b ∈M , d(a, b) = dH({x : x ⊏− a}, {x : x ⊏− b}).

We say that (M,d,⊏−) is a metric set structure if (M,d) is a complete metric space, d is
[0, 1]-valued, and ⊏− ⊆M2 is closed and H-extensional.

Metric set structures are a direct generalization of extensional digraphs (i.e., discrete
models of the extensionality axiom). If δ is a {0, 1}-valued metric on V , then (V, δ, E) is a
metric set structure if and only if (V,E) is an extensional digraph.

We should note that the definition of H-extensionality contains a somewhat arbitrary
choice. After all, we could have just as easily required that d(a, b) = (dH({x : x ⊏− a},
{x : x ⊏− b}))1/2. That said, the choice we have made is reasonable and seems to work
well, so we have not investigated other possibilities in this paper. Moreover, this notion of
extensionality appears in a previous paper of the author [9, Def. 6.4].

A commonly cited benefit of extensionality is that it allows one to take ∈ as the only
primitive notion, with x = y being defined as ∀z(z ∈ x ↔ z ∈ y). It seems unlikely that
we will be able to do something similar with ⊏−, but we can do something similar with the
natural [0, 1]-valued version of x ⊏− Y , which is the distance from x to the elements of Y ,
commonly written dist(x, Y ) or d(x, Y ). In the context of a set theory, d(x, Y ) is entirely
unacceptable, being tantamount to writing x = Y to mean x ∈ Y . dist(x, Y ) is too long to
use frequently, so we will introduce the following notation.

Definition 1.3. We write e(x, y) for inf{d(x, z) : z ⊏− y}.

Another useful characterization of the Hausdorff metric is this: dH(A,B) = supz |dist(z,A)−
dist(z,B)|. This means that if (M,d,⊏−) is a metric set structure, we have that d(x, y) =
supz |e(z, x) − e(z, y)|. Since x ⊏− y if and only if e(x, y) = 0, it should be possible to
take e(x, y) as our only primitive notion. This is the approach we will take in the ‘official’
continuous logic formulation of MSE, which we will discuss in Section 5.

1.2. Formulas. Our formalism will be a small modification of first-order continuous logic,
introduced in its modern form in [1]. Our only predicate symbol will be the metric, d(x, y),
but we will take bound quantifiers of the form supx⊏−y as a primitive notion. Note though
that we cannot access x ⊏− y as a formula directly.

Definition 1.4. Our set of formulas, written L⊏−, is the smallest non-empty set of expres-
sions satisfying the following: For any φ,ψ ∈ L⊏−, variables x and y, and r ∈ R, L⊏− contains
the expressions
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• 1,
• d(x, y),
• φ+ ψ,
• max(φ,ψ),
• min(φ,ψ),

• r · φ,
• supx φ,
• infx φ,
• supx⊏−y φ,
• infx⊏−y φ.

When we need to be more specific, we will refer to elements of L⊏− as L⊏−-formulas.
We refer to quantifiers of the form supx⊏−y or infx⊏−y as bounded. The free variables of a

formula φ are defined in the obvious way. We write φ(x̄) to indicate that the free variables
of φ are included in x̄.

For bookkeeping purposes, we will need the inductively defined quantity given by

• v(1) = v(d(x, y)) = 1,
• v(φ+ ψ) = v(φ) + v(ψ),
• v(max(φ,ψ)) = v(min(φ,ψ)) = max(v(φ), v(ψ)),
• v(r · φ) = |r|v(φ),
• v(supx φ) = v(infx φ) = v(supx⊏−y φ) = v(infx⊏−y φ) = v(φ).

We are allowing ourself arbitrary real numbers in Definition 1.4 because it will be conve-
nient in several places. This convenience comes at a cost later in Section 5, however.

The intended interpretation of a given formula is clear, although we do need to specify
the behavior of bounded quantifiers over empty sets. This is the first of two reasons why
we defined the quantity v(φ).

Definition 1.5. Given a metric set structure (M,d,⊏−) we define real-valued functions φM

for φ ∈ L⊏− inductively:

• 1M = 1.
• (d(a, b))M = d(a, b) for all a, b ∈M .
• (φ + ψ)M = φM + ψM . We define (max(φ,ψ))M , (min(φ,ψ))M , and (r · φ)M

similarly.
• (supx φ(x, ā))M = sup{φM (b, ā) : b ∈M}. We define (infx φ(x, ā))M similarly.
• (supx⊏−a φ(x, a, b̄))M = sup{φM (c, a, b̄) : c ⊏− a} if c ⊏− a for some c ∈M . (infx⊏−a φ(x, a, b̄))M

is defined similarly if c ⊏− a for some c ∈M .
• (supx⊏− φ(x, a, b̄))M = −v(φ) if c ̸⊏− a for all c ∈M .

• (infx⊏−a φ(x, a, b̄))M = v(φ) if c ̸⊏− a for all c ∈M .

We write expressions such as M |= φ(ā) ≤ ψ(b̄) to mean that φM (ā) ≤ ψM (b̄). We may
also write expressions like M |= φ(ā) = r.

The conventions regarding suprema and infima of empty sets were chosen so that formulas
would always be real-valued (rather than taking on values in R ∪ {±∞}) and so that sup
and inf are monotonic with regards to set inclusion, although we have to prove that this is
actually the case.

We will often use commonsensical shorthand such as φ + ψ + θ for φ + (ψ + θ), φ − ψ
for φ + (−1) · ψ, and |φ| for max(φ,−φ). We will abbreviate consecutive quantifiers with
expressions such as supxy. By an abuse of notation, we will also write e(x, y) as shorthand
for the formula infz⊏−y d(x, z).

In the context of a metric set structure M , we may often refer to formulas with pa-
rameters, such as φ(x̄, ā) for some ā ∈ M , as formulas and write them with parameters
suppressed.
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Two important properties of formulas in continuous logic are that they only take on values
in some bounded interval and that they are always uniformly continuous. The relevant
interval and modulus of uniform continuity can be determined by the formula alone. We
will need similar facts here.

Lemma 1.6. For any metric set structure (M,d,⊏−) and formula φ(x̄),

(1) φM (ā) ∈ [−v(φ), v(φ)] for all ā ∈M and
(2) φM : M |x̄| → R is 2v(φ)-Lipschitz in the sense that for any ā, b̄ ∈ M , |φM (ā) −

φM (b̄)| ≤ 2v(φ)d(ā, b̄) (where d(ā, b̄) is the max metric on tuples).

Proof. 1 follows by an easy induction argument and the fact that d is [0, 1]-valued. 2 follows
similarly from the fact that (x, y) 7→ d(x, y) is 2-Lipschitz. □

1.3. Excision. Our comprehension scheme is better defined in terms of its important con-
sequence, rather than directly, as it takes a proof to establish that this property is even
axiomatizable. The principle can be informally justified like this:

Suppose that we run a chalk factory and we are contractually obligated to produce pieces
of chalk that are no longer than 7.62 cm in length. (The chalk is boxed by another company
and needs to fit in their boxes.) Of course, our machine, being cheap, actually produces
pieces that are anywhere between roughly 7.4 cm and 7.8 cm. To deal with this, we add a
second machine that measures length and rejects pieces that are too long. To maximize our
output, we might say that we want it to reject a piece if and only if its length is strictly
longer than 7.62 cm, but the realities of physical measurement mean that this is impossible
to actually accomplish. Since the penalties for violating the contract are quite harsh, we
need to give ourselves some leeway, but we also want to make sure we aren’t throwing away
too many acceptable pieces of chalk. So we configure the machine to accept chalk if it
measures it to be no longer than 7.6 cm. We know that the error of the machine is no more
than 0.01 cm, so we can guarantee that we will accept any piece of length at most 7.58 cm
and reject any piece of length 7.62 cm or more, but we do not make any promises about the
behavior of the machine in the gap between these bounds.4

This is the manner in which we will approximate comprehension. Given a formula φ(x, ȳ)
(i.e., a ‘measurable quantity’), bounds r < s, and parameters ā, we promise that we can
deliver a set b such that for any c, if φ(c, ā) ≤ r, then c ⊏− b, and if φ(c, ā) ≥ s, then c ̸⊏− b,
but we make no commitment about those c’s for which r < φ(c, ā) < s.

Definition 1.7. (M,d,⊏−) satisfies excision if for any formula φ(x, ȳ), reals r < s, and
ā ∈ M , there is a b ∈ M such that for any c ∈ M , if φ(c, ā) ≤ r, then c ⊏− b, and if c ⊏− b,
then φ(c, ā) < s.

It is straightforward but worthwhile to see how this principle avoid Russell’s paradox.
We can consider a set ar satisfying that if 1 − e(b, b) ≤ r, then b ⊏− ar and if b ⊏− ar, then
1−e(b, b) < 1. As we pick r closer and closer to 1, we get better and better approximations of
the Russell class, but for each r, we consistently have that r < e(ar, ar) < 1. So we see that
while our theory is strictly speaking a [0, 1]-valued set theory like C L0, there is something

4Reality aside, a similar thing happens in the context of computable analysis: One can write a program

that is able to discretely sort computable real numbers in the same manner as our chalk factory, but it
is only able to do this if it is allowed to have non-deterministic behavior in some gap. Regardless, this is

sufficient for certain purposes.



A METRIC SET THEORY WITH A UNIVERSAL SET 7

of a qualitative difference in its avoidance of Russell’s paradox. While C L0 is possibly5 able
to avoid Russell’s paradox by Brouwer’s fixed point theorem, our theory avoids it by virtue
of the required gap between r and s (although these are not unrelated phenomena).

We are now finally able to define the class of models of our theory directly before defining
the theory itself.

Definition 1.8. We say that (M,d,⊏−) is a model of MSE, written (M,d,⊏−) |= MSE or
M |= MSE, if it is a metric set structure that satisfies excision.

MSE stands for Metric Sets with Excision.

The following notation will be useful.

Definition 1.9. Given a metric set structure M , a formula φ(x, ȳ), tuple ā ∈M , and reals
r < s, we write

b = [x : φ(x, ā) < r ∼ s]

to mean that for any c, if φM (c, ā) ≤ r, then c ⊏− b and if c ⊏− b, then φM (c, ā) < s.

Note of course that [x : φ(x) < r ∼ s] is not a uniquely specified object, but if M satisfies
excision, it always exists.

It is immediate to show that models of MSE contain some of the familiar sets one expects
to see in a set theory with a universal set.

Proposition 1.10. For any M |= MSE, there are a, b ∈ M such that for all c ∈ M , c ̸⊏− a
and c ⊏− b.

Proof. Let a =
[
x : 1 < 0 ∼ 1

2

]
and b =

[
x : 0 < 1

2 ∼ 1
]
. □

Since these sets are unique by H-extensionality, we will write ∅M for
[
x : 1 < 0 ∼ 1

2

]
and

VM for
[
x : 0 < 1

2 ∼ 1
]
. We may drop the superscript M if no confusion will arise.

2. Derived forms of comprehension

In this section we will show that models of MSE automatically satisfy certain instances
of exact comprehension.

2.1. Relative excision. An important common construction in set theory is separation,
i.e., comprehension relative to a given set. Ordinarily, separation is an easy consequence
of comprehension—{x ∈ A : φ(x)} is the same as the set {x : x ∈ A ∧ φ(x)}—but seeing
that excision is merely an approximate form of comprehension, one might worry that we
will only be able to find sets that are approximately subsets of other given sets. In other
words, if B is a rough approximation of {x : x ∈ A ∧ φ(x)}, then it would only be the case
that x ⊏− B ⇒ e(x,A) < r for some small but positive r. Fortunately, we are able to build
exact subsets of a given set and thereby perform relative excision.

Definition 2.1. For any a, b ∈M , a metric set structure, we write a ⊑ b to mean that for
all c ∈M , if c ⊏− a, then c ⊏− b.

The following is a special case of relative excision, but we state it first because it is the
only form of relative excision we will actually use and it is much easier to prove.

5Various fragments of this theory were shown to be consistent by a few authors in the 1950s and 60s
[3, 4, 16]. A full consistency proof was claimed by White in 1979 [20], but a seemingly fatal gap was

discovered by Terui in 2010 [18] and consistency remains an open problem.
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Proposition 2.2 (Discrete separation). Fix M |= MSE and ā and b in M . For any formula
φ(x, ā) and r < s, if for all c ⊏− b, φM (c, ā) ≤ r or φM (c, ā) ≥ s, then there is an f ⊑ b
such that c ⊏− f ⇔ φM (c, ā) ≤ r.

Proof. If fn = [x : max (φ(x, ā) − r, e(x, a)) < 0 ∼ 2−n] for each n ∈ N, then (fn)n∈N is a
Cauchy sequence that limits to the required set. □

Lemma 2.3. Fix M |= MSE. For any a, b ∈M and ε > 0, there is a c ⊑ a such that

d(b, c) ≤ sup
f⊏−b

inf
g⊏−a

d(f, g) + ε.

Proof. Fix ε > 0. Let c0 = b. For any n, let tn := supf⊏−cn infg⊏−a d(f, g). At stage n, given
cn, let

cn+1 =
[
x : max(e(x, a), e(x, b) − tn) < 2−n−4ε ∼ 2−n−3ε

]
.

Note that that for any f ∈ M , if f ⊏− a and e(f, cn) < tn + 2−n−4ε, then f ⊏− cn+1, and if
f ⊏− cn+1, then e(f, a) < 2−n−4ε and e(f, cn) < tn + 2−n−3ε. In particular, tn+1 ≤ 2−n−3ε.
Note also that by the definition of tn, we have that for any g ⊏− cn, there is an f ⊏− a such
that d(f, g) < tn + 2−n−4ε. Such a g must be an element of cn+1. Since we can do this
for any f ⊏− cn, we have that d(cn, cn+1) ≤ max(tn + 2−n−4ε, tn + 2−n−3ε) = tn + 2−n−3ε.
Hence, for any n > 0, we have that d(cn, cn+1) ≤ 2−n−2ε + 2−n−3ε < 2−n−1ε. Therefore
(cn)n∈N is a Cauchy sequence. Let c = limn→∞ cn.

Since tn → 0 as n → ∞, we have that c ⊑ a. Now we just need to verify that d(b, c) ≤
t0 + ε. Our estimates give that

d(b, c) ≤ d(c0, c1) + d(c1, c) ≤ t0 + 2−4ε+

∞∑
n=1

2−n−1ε < t0 + ε,

as required. □

Proposition 2.4 (Relative excision). If M |= MSE, then for any real-valued formula
φ(x, ȳ), ā, b ∈ M , and reals r < s, there is a c ∈ M with c ⊑ b such that for any f ⊏− b, if
φ(f, ā) ≤ r, then f ⊏− c, and if f ⊏− c, then φ(c, ā) < s.

Proof. Fix φ(x, ȳ) ∈ L⊏−, ā and b in M , and δ > 0 with δ < 1
4v(φ) .

Let c = [x : max(φ(x, ā), e(x, b)) < 0 ∼ δ]. Note that supx⊏−c infy⊏−b d(x, y) ≤ 1
2δ. Apply

Lemma 2.3 to c to get an f ⊑ b such that d(c, f) < δ. We now have that for any g, if g ⊏− b
and φ(g, ā) ≤ 0, then e(g, f) < δ and if e(g, f) ≤ 1

6v(φ) , then e(g, c) ≤ 1
4v(φ) + δ < 1

2v(φ) and

so φ(g, ā) < 2v(φ) 1
2v(φ) .

Since we can do this for any φ(x, ȳ) and ā ∈ M , we have that M satisfies Definition 5.5
relative to the set b. The proposition then follows by repeating the proofs of Lemma 5.6
and Proposition 5.7 relative to the set b. □

In light of Propositions 2.2 and 2.4, we will write

c = [x ⊏− b : φ(x, ā) < r ∼ s]

to mean that for any f ∈M , if f ⊏− b and φM (f, ā) ≤ r, then f ⊏− c and if f ⊏− c, then f ⊏− b
and φM (f, ā) < s.
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2.2. Comprehension for definable classes. Given Proposition 2.4, one might be tempted
to ask whether we can just outright show that models of MSE satisfy a more conventional
form of comprehension. Suppose we have a formula φ(x) and we wish to form the set
{x ∈ M : φM (x) = 0}. Could we not just form the sequence an = [x : |φ(x)| < 0 ∼ 2−n]
and take the limit? While we are perfectly able to form this sequence externally, the diffi-
culty is that it will in general fail to be Cauchy.

Regardless, there are times when such a sequence of approximations does actually con-
verge in the Hausdorff metric, giving us an instance of exact comprehension. This happens
precisely when {x ∈ M : φM (x) = 0} is a definable set in the sense of continuous logic,
although in the context of a set theory it would be more appropriate to refer to these as
definable classes. For the sake of this paper, we will not need the full generality of definable
sets.

Definition 2.5. A closed subsetD ⊆Mn is a definable class if the function x̄ 7→ inf ā∈D d(x̄, ā)
is a uniformly convergent limit of functions of the form φM (x̄, b̄) for φ(x̄, ȳ) ∈ L⊏− and b̄ ∈M .
D is definable without parameters if its definability is witnessed by formulas without pa-
rameters.
D is an explicitly definable class6 if there is a φ(x̄, ȳ) ∈ L⊏− and a tuple b̄ such that

inf ā∈D d(x̄, ā) = φM (x̄, b̄).
x̄ 7→ inf ā∈D d(x̄, ā) is called the distance predicate of D, which we may also write as

e(x̄, D).

This definition is perhaps most strongly motivated by the fact that definable classes are
precisely those that admit relative quantification.

Lemma 2.6. For any metric set structure M and ā ∈M , if φ(x̄, ā) is the distance predicate
of a definable class D ⊆Mn, then for any ψ(x̄, ȳ, z̄) and c̄ ∈M ,(

inf
x̄

min(ψ(x̄, c̄, b̄) + 2v(ψ)φ(x̄, ā), v(ψ))
)M

= inf{ψM (f̄ , c̄, b̄) : f̄ ∈ D},

where inf ∅ is understood to be v(ψ).

Proof. Let r = inf x̄ min(ψ(x̄, c̄, b̄) + 2v(ψ)φ(x̄, ā), v(ψ)) and s = inf{ψM (f̄ , c̄, b̄) : f̄ ∈ D}.
If D is empty, then φ(x̄, ā) = 1 and the result holds.
If D is not empty, then we clearly have that r ≤ s since ψ(x̄, c̄, b̄) ∈ [−v(ψ), v(ψ)] by

Lemma 1.6. For the other direction, fix ḡ ∈ M . For any ε > 0, there is an f̄ ∈ D
such that d(f̄ , ḡ) < e(ḡ, D) + ε. By Lemma 1.6, x̄ 7→ ψ(x̄, c̄, b̄) is 2v(ψ)-Lipschitz, so
ψ(ḡ, c̄, b̄) + 2v(ψ)φ(ḡ, ā) ≥ ψ(f̄ , c̄, b̄) and therefore min(ψ(ḡ, c̄, b̄) + 2v(ψ)φ(ḡ, ā), v(ψ)) ≥
ψ(f̄ , c̄, b̄). Since we can do this for any ḡ ∈M , we have that r ≥ s and we are done. □

In continuous logic generally, definable classes can be characterized as those sets that
admit relative quantification in the same sense as Lemma 2.6. In models of MSE moreover,
definable classes of 1-tuples correspond precisely to sets. In particular, every definable class
is explicitly definable by e(x, a) for some a.

Proposition 2.7. Let M |= MSE. A closed set D ⊆ M is a definable class if and only if
there is an a ∈M such that D = {b ∈M : b ⊏− a}.

Proof. The ⇐ direction is obvious. To show the ⇒ direction, find a formula φn(x, ān) for
each n ∈ N such that supx |φn(x, ān)−e(x,D)| < 2−n. Let bn =

[
x : φn(x, ān) < 2−n ∼ 2−n+1

]
.

6There is no standard term for explicit definability in continuous logic, as it’s not a wholly natural

concept.
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Note that if c ∈ D, then c ⊏− bn and if c ⊏− bn, then e(c,D) < 2−n+1 + 2−n < 2−n+1. This
implies that dH({x ∈ M : x ⊏− bn}, D) ≤ 2−n+1, and so the sequence (bn)n∈N is a Cauchy
sequence and b = limn→∞ bn has the property that c ⊏− b if and only if c ∈ D. □

Proposition 2.7 allows us to answer some very basic questions that we haven’t resolved
yet.

Corollary 2.8. Fix M |= MSE.

(1) (Singletons) For any a ∈M , there is a b ∈M such that c ⊏− b if and only if c = a.
(2) (Finite unions) For any a, b ∈ M , there is a c ∈ M such that f ⊏− c if and only if

f ⊏− a or f ⊏− b.
(3) (Finite sets) For any a0, . . . , an−1 ∈M , there is a b ∈M such that c ⊏− b if and only

if c = ai for some i < n.
(4) (Closure-of-unions) For any a ∈ M , there is a b ∈ M such that c ⊏− b if and only if

b is in the metric closure of {f ∈M : (∃g ⊏− a)f ⊏− g}.

Proof. (1) This is witnessed by the formula d(x, a).
(2) This is witnessed by the formula min(e(x, a), e(x, b)).
(3) This follows from 1 and 2 by induction.
(4) This is witnessed by the formula infy⊏−a e(x, y). □

Unfortunately, however, it is generally not the case that the distance to the intersection
of two sets X and Y can be computed from the distances to X and Y . As such, we cannot
establish the existence of intersections in general. We do, however, get a kind of approximate
intersection in the form of [x ⊏− a : e(x, b) < 0 ∼ ε].

A minor corollary of Corollary 2.8 is that models of MSE satisfy d(x, y) = supz |e(x, z)−
e(y, z)|, as witnessed by the singleton {x}. In [0, 1]-valued set theories, the quantity 1 −
supz |e(x, z) − e(y, z)| is often referred to a Leibniz equality, as it represents the degree to
which x and y cannot be discerned from each other.

In light of Corollary 2.8, we will write {a0, a1, . . . , an−1} for the finite set containing

a0, a1, . . . , an−1, a ⊔ b for the union of a and b, and
⊔
a for the closure of the union of the

elements of a.
Now that we have the ability to form finite sets by Corollary 2.8, we are free to code

ordered pairs. While we certainly could use the standard Kuratowski ordered pair, Wiener’s
earlier definition is actually preferable to us for technical reasons.7 As such, we will write
⟨a, b⟩ for {{{a},∅}, {{b}}}. Recall that d(ab, cf) := max(d(a, c), d(b, f)).

Lemma 2.9. Let M |= MSE. For any a, b, c, f ∈M ,

d(⟨a, b⟩, ⟨c, d⟩) = d(ab, cf).

Proof. Let A = {{a},∅}, B = {{b}}, C = {{c},∅}, and F = {{f}}. We have that

d({A,B}, {C,F}) = max(e(A, {C,F}), e(B, {C,F}), e(C, {A,B}), e(F, {A,B})).

For any x, d({x},∅) = 1. This implies that d({{x},∅}, {{y}}) = 1 for any x and y as well.
This implies, for instance, that

e(A, {C,F}) = min(d(A,C), d(A,F )) = min(d(A,C), 1) = d(A,C).

7If ⟨a, b⟩ := {{a}, {a, b}}, then a straightforward but tedious calculation shows that d(⟨a, b⟩, ⟨c, f⟩) =

max(d(a, c),min(d(b, f),max(d(a, f), d(b, c)))) and so d(⟨a, b⟩, ⟨c, f⟩) ≤ d(ab, cf) ≤ 3d(⟨a, b⟩, ⟨c, f⟩). Setting
⟨a, b⟩ = ⟨2, 0⟩ and ⟨c, f⟩ = ⟨1, 3⟩ in R shows that this is sharp. If d is an ultrametric however, we do get

d(⟨a, b⟩, ⟨c, f⟩) = d(ab, cf).
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This together with similar facts for the other three terms implies that

d({A,B}, {C,F}) = max(d(A,C), d(B,F ), d(C,A), d(F,B))

= max(d(A,C), d(B,F )).

Finally, d({{x}}, {{y}}) = d(x, y) and d({{x},∅}, {{y},∅}) = d(x, y) for any x and y, so
we have that d(⟨a, b⟩, ⟨c, f⟩) = d({A,B}, {C,F}) = d(ab, cf), as required. □

Lemma 2.9 means that a sequence of ordered pairs can only converge to an ordered
pair and that convergence of sequences of ordered pairs behaves in the expected way. In
particular, the class of ordered pairs is closed.

With a little more work we can establish the existence of power sets.

Proposition 2.10 (Power sets). For any a ∈ M , there is a b ∈ M such that c ⊏− b if and
only if c ⊑ a.

Proof. First note that by basic properties of the Hausdorff metric, the class P(a) := {c ∈
M : c ⊑ a} is necessarily closed. By Lemma 2.3, we know that for any f ∈M ,

inf
g∈P(a)

d(f, g) ≤ sup
y⊏−f

inf
z⊏−a

d(y, z).

On the other hand, for any g ∈ P(a), we must have that

sup
y⊏−f

inf
z⊏−a

d(y, z) ≤ sup
y⊏−f

inf
z⊏−g

d(y, z) ≤ d(f, g),

by monotonicity of inf. Therefore,

sup
y⊏−f

inf
z⊏−a

d(y, z) ≤ inf
g∈P(a)

d(f, g),

and so the two quantities are actually equal. Hence P(a) is a definable class and is coex-
tensive with some element b ∈M by Proposition 2.7. □

We will write P(a) for the power set of a.

2.3. Definable functions and replacement. Now that we are confident that ordered
pairs exist, the next natural thing to consider is Cartesian products. In order to show that
the class a× b := {⟨c, f⟩ : c ⊏− a, f ⊏− b} is definable and therefore a set, what we would like
to be able to do is write a real-valued formula like this:

φ(x) = inf
y⊏−a

inf
z⊏−b

d(x, {{{a},∅}, {{b}}}).

If we did have this formula, φ(x) would of course be the point-set distance from x to the
class a× b. The issue is that the functions x 7→ {x} and (x, y) 7→ {x, y} and the constant ∅
are not formally part of our logic.

Practically, however, it is commonly understood in the context of discrete logic that it is
safe to pretend that certain functions—namely the definable functions—are formally part of
the language in the following sense: Given a discrete structure M , a function f : Mn →M
is definable if and only if for every formula φ(x̄, y, z̄), there is a formula ψ(x̄, z̄) such that
for any ā, b̄ ∈M , M |= φ(ā, f(ā), b̄) if and only if M |= ψ(ā, b̄). It is easy to show that this
is equivalent to the graph of f being a definable subset of Mn+1.

In continuous logic, a similar thing can be done:



12 JAMES HANSON

Definition 2.11. Given a set X ⊆ Mn, a function f : X → M is definable if for every
ε > 0, there is a φ(x̄, y, z̄) ∈ L⊏− and a c̄ ∈ M such that for any ā ∈ X and b ∈ M ,
|d(f(ā), b) − φM (ā, b, c̄)| < ε.
f is explicitly definable if there is a φ(x̄, y, z̄) ∈ L⊏− and a tuple c̄ such that d(f(ā), b) =

φM (ā, b, c̄) for every ā ∈ X and b ∈Mn+1.
If X = Mn, we say that f is an (explicitly) definable total function. Otherwise it is an

(explicitly) definable partial function.8

Given a function g : Mn → M , we say that g is (explicitly) definable on X if g↾X is
(explicitly) definable.

When X is itself definable, it is not too hard to show that f is definable if and only if it
is uniformly continuous and its graph is definable (in the sense of Definition 2.5 relative to
the max metric on tuples).

Again, while more general statements can be made (see [1, Sec. 9]), we really only need
explicitly definable functions.9

Lemma 2.12. For any metric set structure M , formula φ(x̄, y, z̄), and explicitly definable
function f(x̄) with domain X ⊆ Mn, there is a formula ψ(x̄, z̄) (possibly with parameters)
such that for all ā ∈ X and b̄ ∈M , ψM (ā, b̄) = φM (ā, f(ā), b̄).

Proof. Let f(x̄) be defined on X by χ(x̄, y) (possibly with parameters). By the same argu-
ment as in the proof of Lemma 2.6, the formula infy φ(x̄, y, z̄) + 2v(φ)χ(x̄, y) is the required
ψ(x̄, z̄). □

A corollary of Lemma 2.12 is that compositions of explicitly definable functions are
explicitly definable. (This is also true of definable functions, but we will not need it.)

It is fairly immediate that the operations we established in Section 2.2 are in fact definable:

Proposition 2.13. Let M |= MSE. The following functions are explicitly definable.

(1) () 7→ ∅M .
(2) () 7→ VM .
(3) (x0, x1, . . . , xn−1) 7→ {x0, x1, . . . , xn−1}.
(4) (x, y) 7→ x ⊔ y.
(5) x 7→

⊔
x.

(6) (x, y) 7→ ⟨x, y⟩.
(7) x 7→ P(x).

Proof. The definability of these functions are witnessed by the following formulas.

(1) d(y,∅) = 1 − infz⊏−y d(z, z).
(2) d(y, V ) = supz e(z, y).
(3) d(y, {x0, x1, . . . , xn−1}) = supz |e(z, y) − min(d(z, x0), . . . , d(z, xn−1))|.
(4) d(z, x ⊔ y) = supw |e(w, z) − min(e(w, x), e(w, y))|.
(5) d

(
y,
⊔
x
)

= supz |e(z, y) − infw⊏−x e(z, w)|.
(7) d(y,P(x)) = supz

∣∣e(z, y) − supu⊏−z infv⊏−x d(u, v)
∣∣.

6 follows from the fact that (x, y) 7→ ⟨x, y⟩ is a composition of other explicitly definable
functions. □

8Beware that, unlike in discrete first-order logic, definable partial functions do not always extend to

definable total functions in continuous logic [8, C.1.2].
9Note though that with definable sets, in the special context of models of MSE, all definable sets are

ultimately explicitly definable. It seems unlikely that this will be true for non-Lipschitz definable functions.
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Now finally we can return to the question of forming a Cartesian product of two sets.
The relevant fact is this:

Proposition 2.14 (Images of definable functions). Let M |= MSE. For any definable
function f : X → M and any a0, . . . , an−1 ∈ M , if b̄ ∈ X for any tuple b̄ satisfying bi ⊏− ai
for each i < n, then the metric closure of {f(b0, . . . , bn−1) : b0 ⊏− a0, . . . , bn−1 ⊏− an−1} is a
definable class.

Proof. infx0⊏−a0 . . . infxn−1⊏−an−1
d(x, f(x0, . . . , xn−1)) is clearly the distance predicate of the

class in question. By Lemma 2.12, this is equivalent to a formula. □

Corollary 2.15 (Cartesian products). Let M |= MSE. For any a, b ∈M , there is a c ∈M
such that f ⊏− c if and only if f = ⟨g, h⟩ for some g ⊏− a and h ⊏− b.

Proof. By Proposition 2.14, the metric closure of a × b := {⟨x, y⟩ : x ⊏− a, y ⊏− b} is a
definable class. By the discussion at the end of Section 2.2, a × b is already metrically
closed, so we have that it is a definable class. By Proposition 2.7, we have that the required
c exists. □

We will write a× b for the set whose existence is established in Corollary 2.15.
One thing to note is that the proof of Corollary 2.15 actually establishes that the function

(x, y) 7→ x× y is explicitly definable as witnessed by the formula infw⊏−x infu⊏−y d(z, ⟨w, u⟩).
It is occasionally useful to be able to project sets of ordered pairs onto their coordinates.

Since the projection function π0(⟨x, y⟩) = x is only partially defined, this is the first time
we need the added generality of being able to talk about definable partial functions.

Proposition 2.16. Let M |= MSE. Let π0 and π1 be the functions on the class of ordered
pairs defined by π0(⟨x, y⟩) = x and π1(⟨x, y⟩) = y. π0 and π1 are explicitly definable.

Proof. This is witnessed by the formulas infz d(⟨y, z⟩, x) and infz d(⟨z, y⟩, x). □

The following facts will also be useful.

Lemma 2.17. Fix closed sets X ⊆ Mn and Y ⊆ Mn+1. Suppose that there is a formula
φ(x̄, y) such that for every ā ∈ X and b ∈M , φM (ā, b) = e(b, {y : (ā, y) ∈ Y }). Then there
is an explicitly definable function f : X →M such that for every ā ∈ X, f(ā) is coextensive
with {y : (ā, y) ∈ Y }.

Proof. The formula ψ(x̄, z) = infy |e(y, z) − φ(x̄, y)| witnesses that the required function is
explicitly definable. □

Lemma 2.18. If f : a → M is an explicitly definable partial function on some set a, then
the map x 7→ {f(y) : y ⊏− x} is an explicitly definable partial function on the set P(a).

Proof. Let φ(y, z) be a formula (possibly with parameters) such that φM (b, c) = d(b, f(c))
for all b ⊏− a and c ∈ M . We now have that for any g ⊑ a, infz⊏−g φ(y, z) is the distance

predicate of {f(y) : y ⊏− g}. Therefore the required function is definable by Lemma 2.17. □

2.4. Quotients by discrete equivalence relations. A common technique is passing from
an equivalence relation to its set of equivalence classes. We are able to do this for discrete
equivalence relations.

Definition 2.19. Fix a metric set structure M . Given a set a ∈M , a formula φ(x, y) is a
discrete equivalence relation on a if for all b, c ⊏− a, φM (b, c) is either 0 or 1 and φM (x, y) = 1
is an equivalence relation on {b ∈M : b ⊏− a}.



14 JAMES HANSON

First we need a small observation.

Lemma 2.20. Let M |= MSE. If φ(x, y) is a discrete equivalence relation on a ∈ M , then
for any b ⊏− a,

ψ(x, b) := inf
y⊏−a

max(φ(y, b), d(x, y))

is the distance predicate of the φ-equivalence class of b. □

Proposition 2.21. Let M |= MSE. If φ(x, y) is a discrete equivalence relation on a ∈ M ,
then there is a b ∈M containing precisely the φ-equivalence classes of a.

Moreover, if c is a set such that φ(x, y) is a discrete equivalence relation on every a ⊏− c,
then the map taking a to the set of φ-equivalence classes of a is an explicitly definable partial
function on c.

Proof. The formula in Lemma 2.20 defines a partial function on a that maps elements to
their φ-equivalence classes. Therefore, by Proposition 2.14, the closure of the class of φ-
equivalence classes of a is a set in M . By Lemma 2.20, the class of φ-equivalence classes is
closed, so we are done.

The ‘Moreover’ statement follows from Lemma 2.17. □

3. Uniformly discrete sets and ordinary mathematics

A common feature of models of set theories that implement some kind of nearly unre-
stricted comprehension is that they have a class of tame sets in which unrestricted separa-
tion is consistent. In NFU, the strongly cantorian sets are well behaved in this way, and in
GPK+

∞, the closed sets of isolated points are likewise well behaved. In the context of MSE,
the analogously well-behaved class seems to be that of the uniformly discrete sets.

Definition 3.1. In a metric set structure M , an element a ∈ M is ε-discrete if for any
b, c ⊏− a, either b = c or d(b, c) ≥ ε. a is uniformly discrete if it is ε-discrete for some ε > 0.

Definition 3.2. For any a and b, the disjoint union of a and b, written a⊞ b, is (a×{∅})⊔
(b× {{∅}}).

Note that it is immediate that (x, y) 7→ x⊞ y is an explicitly definable function.

Lemma 3.3. Let M |= MSE. If a, b ∈ M are ε-discrete, then a ⊞ b, a × b, and P(a) are
ε-discrete.

Proof. If a is empty, then the statements in the lemma are trivial, and if b is empty, then
the statements for a⊞ b and a× b are trivial, so assume that a and b are both non-empty.
Fix c, f ⊏− a and g, f ⊏− b.

For the disjoint union, we have that d(⟨c,∅⟩, ⟨g, {∅}⟩) = d(∅, {∅}) = 1. Furthermore,
d(⟨c,∅⟩, ⟨f,∅⟩) = d(c, f) and d(⟨g, {∅}⟩, ⟨f, {∅}⟩) = d(g, f), so a⊞ b is ε-discrete.

For the Cartesian product, if ⟨c, g⟩ ≠ ⟨f, h⟩, then either c ̸= f or g ̸= h. In either case we
have that d(⟨c, g⟩, ⟨f, h⟩) ≥ ε.

For the power set, if c ̸= f , then we may assume without loss of generality that there is
a g such that g ⊏− c but g ̸⊏− f . Since g ̸= h for all h ⊏− f , we have that e(g, h) ≥ ε (since a
is ε-discrete). Therefore d(c, f) ≥ ε. □

Note that Lemma 3.3 relies on our use of Wiener pairs over Kuratowski pairs. While
seemingly a cosmetic issue, this will eventually matter in Lemma 3.3.

Within uniformly discrete sets, we are generally able to reason in a familiar discrete
manner. To distinguish discrete formulas from real-valued formulas, we will usually write
discrete formulas with capital Greek letters.
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Definition 3.4. Given a tuple ā of formal type variables, we write ā∗ for the smallest
collection of expressions containing {a0, a1, . . . } and containing (the formal expressions)
b× c and P(b) for any b, c ∈ A∗.

We write Ldis(ā) for the smallest collection of formulas satisfying the following (where b
and c are elements of ā∗):

• For any x:b and y:c, x = y is in Ldis(ā).
• For any x:b, y:c, and z:b× c, ⟨x, y⟩ = z is in Ldis(ā).
• For any x:b and y:P(b), x ⊏− y is in Ldis(ā).
• For Φ,Ψ ∈ Ldis(ā), Φ ∧ Ψ, Φ ∨ Ψ, Φ → Ψ, and ¬Φ are in Ldis(ā).
• For Φ ∈ Ldis(ā) and x:b, (∃x:b)Φ and (∀x:b)Φ are in Ldis(ā).

If we wish to specify the variables and formal type variables of a formula Φ ∈ Ldis(ā), we
will write Φ(x̄; ā) (where the free variables of Φ are among x̄).

The formal type variables in a formula of Ldis(ā) are intended to be interpreted as uni-
formly discrete sets in a model of MSE, in which case a variable of type a is allowed to take
on values in a. The interpretation of a formula is then clear:

Definition 3.5. Fix M |= MSE. Given a formula Φ(x̄; ā) ∈ Ldis(ā), a tuple b̄ ∈ M of the
same length as ā, and a tuple c̄ of the same length as x̄, we say that Φ(c̄; b̄) is well-typed if
for each ci ∈ c̄, if xi is a variable of type t(ā) (where t(ā) is a formal type expression), then
ci ⊏− t(b̄) (where t is now interpreted as a literal expression involving the functions × and P
in M).

If Φ(c̄; b̄) is well-typed, we write M |= Φ(c̄; b̄) to mean that (M,⊏−) satisfies Φ(c̄; b̄) as a
discrete structure (where quantifiers such as ∃x:t(b̄) are interpreted as ∃x ⊏− t(b̄)).

Now, we will see that as long as the sets in b̄ are ε-discrete, we can express these kinds
of discrete formulas as real-valued formulas in a mostly uniform way.

Definition 3.6. Given a tuple ā of formal type variables, a formula Φ(x̄) ∈ Ldis(ā), and
ε > 0, we write JΦKε(x̄; ā) for the real-valued formula defined by the following inductive
procedure:

• Jx = yKε = max
(
1 − 1

εd(x, y), 0
)
.

• J⟨x, y⟩ = zKε = max
(
1 − 1

εd(⟨x, y⟩, z), 0
)
.

• Jx ⊏− yKε = max
(
1 − 1

εe(x, y), 0
)
.

• JΦ ∧ ΨKε = min (JΦKε, JΨKε).
• J¬ΦKε = 1 − JΦKε.
• J(∃x:a)ΦKε = supx⊏−aJΦKε.

The other Boolean connectives and the universal quantifier are defined from the above in
the typical way.

Proposition 3.7. Fix M |= MSE. For any formal tuple ā of type variable and any formula
Φ(x̄; ā) ∈ Ldis(ā), we have for any ε-discrete sets b̄ ∈ M and any c̄ ∈ M such that Φ(b̄; c̄)
is well-typed, M |= Φ(b̄; c̄) if and only if (JΦKε(b̄; c̄))

M = 1 and M |= ¬Φ(b̄; c̄) if and only if
(JΦKε(b̄; c̄))

M = 0.

Proof. This follows immediately by induction on the construction of formulas in Ldis(ā). □

Given Proposition 3.7, we can now confidently talk about familiar discrete concepts in the
context of uniformly discrete sets. In particular, we can develop the notion of cardinalities.

Definition 3.8. Given a uniformly discrete sets a, b ∈ M |= MSE, we write M |= a ≈ b to
mean that there is a c ⊑ a× b that is the graph of a bijection between a and b.
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It is clear that there is an Ldis(a, b)-formula η(x, y) with the property that if a and b are
ε-discrete, c ⊑ a, and f ⊑ b, then M |= Jη(c, f)Kε if and only if M |= c ≈ f . We will write
x ≈a,b y for this formula. We will write ≈a for ≈a,a. It is immediate that Jx ≈a yKε is an
equivalence relation on P(a) whenever a is ε-discrete.

Definition 3.9. Given an ε-discrete set a, a cardinal of a is a Jx ≈a yKε-equivalence class.
We write Carda for the collection of cardinals of a.

Given b ⊑ a, we write |b|a for the Jx ≈a yKε-equivalence class of b.

It follows immediately from the above discussion and Proposition 2.21 that Carda is a
set for any uniformly discrete a ∈M |= MSE. Furthermore, x 7→ |x|a is a definable function
on P(a).

Definition 3.10. Given a uniformly discrete set a and a set b ⊑ P(a), we write succa(b)
for the collection {c ⊏− P(a) : (∃f ⊏− b)[f ⊑ c ∧ ∃!g(g ⊏− f ∧ c ̸⊏− f)]}.

It follows from Proposition 2.2 that succa(b) is a set for any uniformly discrete a and
b ⊑ a. Note that succa is an explicitly definable function by Lemma 2.17. Furthermore, if
b ∈ Carda, then either succa(b) ∈ Carda or succa(b) = ∅.

Definition 3.11. We write 0 for the set {∅}. (Note that 0 is always an element of Carda.)
We write inda(x) for the Ldis(a)-formula 0 ⊏− x ∧ (∀y ⊏− x) succa(y) ∈ x ∨ succa(y) = ∅.

If inda(x) holds, we say that x is an inductive set.
We write Na for the set {x ∈ P2(a) : (∀y ∈ P3(a)) inda(y) → x ⊏− y}.

It is clear that inda(Carda) always holds and so Na ⊑ Carda for any uniformly discrete
a.

Now we can finally state the local version of the axiom of infinity.

Definition 3.12. We write Inf(a) for the Ldis(a)-sentence |a|a ̸⊏− Na.

It is easy to show that Inf(a) holds if and only if Na ̸= Carda.
Now provided that one can find a uniformly discrete a ∈M |= MSE such that M |= Inf(a),

we have that (Na,P(Na),P2(Na), . . . ) is a model of full ωth-order arithmetic, which is more
than sufficient to develop ordinary mathematics.

Given the local nature of our development here, one might worry that there could be
uniformly discrete a, b ∈M |= MSE for which Inf(a) and Inf(b) both hold but Na and Nb are
not internally isomorphic. Fortunately, since our theory is fully impredicative, this cannot
happen.

Proposition 3.13. Fix M |= MSE and uniformly discrete a ⊑ b ∈M .

(1) The equivalence relation ≈a is the restriction of the equivalence relation ≈b to P(a)×
P(a). Write ι for the induced map from Carda to Cardb.

(2) If M |= Inf(a), then M |= Inf(b) and Nb is the image of Na under ι.
(3) For any uniformly discrete c, if M |= Inf(a) ∧ Inf(c), then Na ≈ Nc.

Proof. 1 follows from the fact that any bijection between subsets of a that exists as a subset
of b× b is already a subset of a× a. 2 and 3 follow from 1. □

4. Global structure of models of MSE

While Section 3 gives a satisfactory picture of the local structure of a model of MSE
around some collection of uniformly discrete sets, the axiom of infinity is a global statement
in that it says that there is some set, somewhere, that is infinite.
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It is clear that we can take a more global view of cardinality for uniformly discrete sets in
a model of MSE. ≈ is a perfectly well-defined equivalence relation externally and it would
make sense to call its equivalence classes cardinals, but we cannot write it as a formula.
While 0 = {∅} and the class of all singletons, 1, are both sets, the class of doubletons in a
model of MSE is never closed, which precludes it from being a set.10

Suppose furthermore that there is a 1
2 -discrete set a such that M |= Inf(a). Does this

necessarily imply that there is a 1-discrete set b such that M |= Inf(a)? Can we somehow
scale a set up in this way? We will see in Theorem 4.10 that the answer is no, and so in
order to state the axiom of infinity in a global way, we will need to specify the scale at which
infinity is to first appear.

4.1. Collecting ε-discrete sets and ‘the’ axiom of infinity. But before we can formal-
ize that, we need to deal with another subtlety we have been ignoring up until now. How do
we even know that we can find any uniformly discrete sets? Clearly ∅ is uniformly discrete,
and likewise all hereditarily finite sets are, but it is not clear that the class of hereditarily
finite sets is even a set.

What we would like to be able to do is make a formula φ(x) that returns dis(x) :=
sup{r > 0 : x is r-discrete}, but dis is not a continuous function and so cannot possibly be
a formula. If (an)n∈N is a Cauchy sequence limiting to a with an ̸= a for all n ∈ N, then
({an, a})n∈N will be d(an, a)-discrete but no better for every n, yet the limit, {a}, will be
1-discrete. (This is just the fact that the class of doubletons is not closed again.)

This makes it seem unlikely that we will be able to even approximately collect the r-
discrete sets into a class. Nevertheless, we are able to do something nearly as good.

Fix r > 0 and consider the formula

φr(x) = sup
z,y⊏−x

min(d(y, z), r − d(y, z)).

Note that φMr (a) ≤ ε if and only if for every b, c ⊏− a, either d(y, z) ≤ ε or d(y, z) ≥ r − ε.
If moreover ε < 1

3r, this implies that the formula

Er(x) = max(min( 1
r (2r − 3d(x, y)), 1), 0)

defines a discrete equivalence relation on the elements of a. If a is already r-discrete, then
this equivalence relation is equality. For any ε > 0 with ε < 1

3r, let

Xr =
{
x ∈M : φMr (x) < 1

3r
}

and let fr : Xr → M be the function that takes a to the set of Er-equivalence classes of
a. By Lemma 2.17 and Proposition 2.21, fr is an explicitly definable partial function. Let
ψr(x, y) be a formula defining it (i.e., for any a ∈ Xr and b ∈ M , ψMr (a, b) = d(fr(a), b)).
(Note that ψr(x, y) does not need any parameters.) Note that for any a ∈ Xr, fr(a) is
1
3r-discrete.

Definition 4.1. For any r, ε > 0 with ε < 1
3r, we let Infr,ε denote the condition

sup
x

min
(

1 + ε− φe(x), JInf(fr(x))K 1
3 r

)
≥ 1,

where JInf(fr(x))K 1
3 r

means infzJInf(z)K 1
3 r

+ 2v(JInf(−)K 1
3 r

)ψr(x, z).

We let Inf denote the collection of conditions {Inf1,ε : 0 < ε < 1
3}.

Proposition 4.2. Fix M |= MSE.

10This phenomenon is also seen in models of GPK+.
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(1) For any r, ε > 0 with ε < 1
3r, M |= Infr,ε if and only if for every s ∈ (0, r− ε), there

is an s-discrete set a ∈M such that M |= Inf(a).
(2) M |= Inf if and only if for every r ∈ (0, 1), there is an r-discrete set a ∈ M such

that M |= Inf(a).

Proof. 2 follows immediately from 1. For the ⇒ direction of 1, assume that M |= Infr,ε.
This implies that for any δ > 0, there is an b ∈ M such that M |= 1 + ε − φr(b) > 1 − δ
and M |= infzJInf(z)K 1

3 r
+ 2v(JInf(−)K 1

3 r
)ψr(b, z) > 1 − δ. The first condition implies that

φMr (b) < ε + δ. For δ < 1
3r − ε, this implies that b is in Xr and so fr(b) is (r − ε − δ)-

discrete. Since b ∈ Xr, the second condition is equivalent to M |= JInf(fr(b))K 1
3 r

≥ 1, which

is equivalent to M |= Inf(fr(b)) and we can take fr(b) to be the required a. Since we can
do this for any δ > 0 (and since an s-discrete set is t-discrete for any t < s), we have the
required statement.

For the ⇐ direction, fix s ∈ ( 2
3r, r−ε) and let a be an s-discrete set such that M |= Inf(a).

Now we clearly have that φr(a) ≤ r − s < 1
3r. Therefore fr(a) is defined (and equal to

{{x} : x ⊏− a}). Since M |= Inf(a), M |= Inf(fr(a)) as well. (There is an obviously definable
bijection between a and fr(a). This exists as an element of P(a× fr(a)).) Since we can do
this for any sufficiently large s < r − ε, we’re done. □

By the discussion in Section 3, any of the axioms Infr,ε is a sufficient form of the axiom
of infinity for the purposes of developing standard mathematics. Nevertheless, we propose
the scheme Inf as a canonical choice for ‘the axiom of infinity’ in the context of MSE. One
objection to this proposal might be that it is a scheme, rather than a single axiom, but
as discussed in [10, Sec. 6.1], the concept of finite axiomatizability is murky in continuous
logic.

For most of the models we construct in Section 6, there is a 1-discrete set a for which
Inf(a) holds. This is obviously a more comfortable condition than M |= Inf, but it is unclear
whether it is actually axiomatizable. We could achieve it by adding a constant for some
such a, but this is unsatisfying. Thus we have the following question.

Question 4.3. Is the class {M |= MSE : (∃a ∈M)a is 1-discrete, M |= Inf(a)} elementary
in the sense of continuous logic?

General pessimism leads us to believe that the answer to this is no, but we do not see an
approach to resolving this question.

4.2. Ordinals. Rather than develop the global structure of cardinals in models of MSE, we
will focus on ordinals. We do this for a couple of reasons. Many of the technical details for
cardinals and ordinals are similar but not quite similar enough to develop simultaneously in
an expeditious way. Furthermore, more can be said about the structure of ordinals than of
cardinals without assuming some form of the axiom of choice.

Definition 4.4. Fix M |= MSE. A chain in M is a set a such that for any b, c ∈ a, either
b ⊑ c or c ⊑ b.

Two uniformly discrete chains a and b are order-isomorphic if there is a bijection f ∈
P(a× b) such that for any g, h ⊏− a, it holds that g ⊑ h if and only if f(g) ⊑ f(h). We write
a ∼= b to signify that a and b are order-isomorphic. The order type of a is the ∼=-class of a,
written otp(a).

A uniformly discrete chain a is well-ordered if for any non-empty b ⊑ a, there is a ⊑-least
element of b.
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The order types of uniformly discrete well-ordered chains in M are referred to as the
ordinals of M , and the collection of such is written OrdM .

Note that we will typically use the term well-ordered to mean internally well-ordered.
We will use the word ‘externally’ if we wish to emphasize that something is externally
well-ordered.

Given a more general sort of linear order, namely a pair (a, b) with a uniformly discrete
and b ⊑ a× a the graph of a linear order, we can find a uniformly discrete chain c such that
(a, b) and (c,⊑↾c× c) are internally order-isomorphic. We just need to map each element f
of a to the set {x ⊏− a : ⟨x, f⟩ ⊏− c} (i.e., the c-initial segment with largest element f). In
this way we can see that uniformly discrete chains are sufficient to represent all uniformly
discrete linear order types in models of MSE.

We denote order types of uniformly discrete well-ordered chains with lowercase Greek
letters near the beginning of the alphabet, such as α and β. We write α ≤ β to mean that
for any a with otp(a) = α and any b with otp(b) = β, a is order-isomorphic to some initial
segment of b. We write α < β to mean that α ≤ β and α ̸= β. By a completely standard
argument, we have that for any ordinals α, β ∈ OrdM , either α < β, β < α, or α = β.

To what extent can we approximate the class of well-ordered uniformly discrete chains
with a set? As is typically the case in set theories with a universal set, something fishy
needs to happen with regards to the class of ordinals, on pain of the Burali-Forti paradox.
In particular, it is immediate that there cannot be a uniformly discrete set containing
representatives of all ordinals of M .

Using techniques similar to those in Section 4.1, we are able to collect representatives
of all well-order types occurring below a certain scale. Just as there, we can’t easily form
sets that consist solely of r-discrete chains, only things that are in some sense ‘approximate
chains.’ We can use a similar trick, however, to turn these into order-isomorphic chains.

Definition 4.5. Let σ(x, y) = supz⊏−x e(z, y). Let chn(x) = supy,z⊏−x min(σ(y, z), σ(z, y)).

Note that σ(a, b) = 0 if and only if a ⊑ b. Note also that d(a, b) = max(σ(a, b), σ(b, a)).
Furthermore, chn(a) = 0 if and only if a is a chain. Let φr, Er, Xr, and fr be defined as
they were in Section 4.1.

Lemma 4.6. For any r > 0 and a ∈ M |= MSE, if φr(a) < 1
3r and chn(a) < 1

3r, then for

any b, c ⊏− a, exclusively either d(a, b) < 1
3r, σ(a, b) > 2

3r, or σ(b, a) > 2
3 .

Proof. Since φr(a) < 1
3r, we have that for any b, c ⊏− a, either d(b, c) < 1

3r or d(b, c) > 2
3r.

Since chn(a) < 1
3r, we have that for any b, c ⊏− a, either σ(b, c) < 1

3r or σ(c, b) < 1
3r.

If d(b, c) ̸< 1
3r, then we must have either σ(b, c) ≥ 1

3r or σ(c, b) ≥ 1
3r, whence either

σ(b, c) > 2
3r and σ(c, b) < 1

3r or σ(c, b) > 2
3r and σ(b, c) < 1

3r. □

Define the formula

o(x, y) = sup
z⊏−x

sup
w⊏−y

σ(z, w).

Lemma 4.6 implies that if φr(a) < 1
3r and chn(a) < 1

3 , then for any Er-equivalence classes

b and c of a, either o(b, c) ≤ 1
3r or o(b, c) ≤ 1

3r. Furthermore, if both of these hold, then
b = c.

Let Cr be the class {x ∈ Xr : chn(x) < 1
3r}. By the above observations, we have that

the function gr : Cr →M defined by

gr(a) =
{
{x ⊏− fr(a) : o(x, y) ≤ 1

3r} : y ∈ fr(a)
}
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is explicitly definable (without parameters). (Note that we do not need to take closures as
fr(a) is 1

3r-discrete.) Furthermore, it is immediate that gr(a) is a 1
3r-discrete chain for any

a ∈ Cr and if a ∈ Cr is a chain, then gr(a) = {{{x} : x ⊏− a, x ⊑ y} : y ∈ a} and moreover
a and gr(a) are order-isomorphic as chains.

With this machinery, we are finally in a position to examine the global structure of
ordinals in models of MSE. In particular, we will show that

Definition 4.7. For any ordinal α of M |= MSE, we write s(α) for the quantity

sup{r > 0 : (∃ well-ordered r-discrete chain x ∈M) otp(x) = α}.

It is easy to see that if α ≤ β, then s(α) ≥ s(β), so for any M |= MSE, s is a non-increasing

map from OrdM to (0, 1]. Furthermore, it is always the case that s(0) = 1. By using Hartogs

numbers, its easy to show that for any ordinal α ∈ OrdM , there is an ordinal β ∈ OrdM of
strictly larger cardinality, namely the Hartogs number of P(a), where otp(a) = α. By an
abuse of notation, we’ll write this as ℵ(P(α)). Note that by Lemma 3.3 and the fact that
the Hartogs number of X always embeds into P3(X), we have that s(α) = s(ℵ(P(α))). This
means that if s(β) < s(α), then β has much larger cardinality than α.

We’ll write ωM for the first limit ordinal in M , if it exists. The value of s(ωM ) is directly
related to the axiom of infinity.

Proposition 4.8. Fix M |= MSE. For any r ∈ (0, 1] and ε ∈ (0, 13r), M |= Infr,ε if and

only if ωM exists and r ≤ s(ωM ). In particular, M |= Inf if and only if ωM exists and
s(ωM ) = 1.

Proof. Let Nia be the set of initial segments of Na for some uniformly discrete a. It is
immediate that Nia is a well-ordered chain. If a is r-discrete, then we have by Lemma 3.3
that Nia is r-discrete as well. It is easy to show that otp(Nia) = ωM if and only if M |=
Inf(a). Conversely, if otp(b) = ωM for some well-ordered uniformly discrete chain b, then
M |= Inf(b). The result now follows from Proposition 4.2. □

Lemma 4.9. Let a and b be r-discrete chains in some M |= MSE. If d(a, b) < 1
2r, then

a ∼= b. Furthermore, if (M,d) is an ultrametric space, it is enough to assume that d(a, b) < r.

Proof. Fix s such that d(a, b) < s < 1
2r. Since a and b are r-discrete, we have that the class

f = {⟨x, y⟩ ⊏− a × b : d(x, y) ≤ s} is a set and is the graph of a bijection between a and b.
Now we need to show that f is actually an order isomorphism between a and b. Suppose
that we have c, c′ ⊏− a with c ⊑ c′ and g, g′ ⊏− b with d(c, g) < s and d(c′, g′) < s. If c = c′,
then g = g′, so assume that c ⊏ c′. Since d(c, c′) ≥ r, we can find an h ⊏− c′ such that
e(h, c) > 2s (as 2s < r). Since d(c′, g′) < s, we can find an i ⊏− g′ such that d(h, i) < s. The
triangle inequality implies that e(i, g) ≥ e(h, c)−d(h, i)−d(c, g) > 2s− s− s = 0. Therefore
i ̸⊏− g and it must be the case that g ⊏ g′, as required.

The proof in the ultrametric case is essentially the same. □

Theorem 4.10. Fix M |= MSE and r ∈ {s(γ) : γ ∈ OrdM}. Let t = r if d is an ultrametric
and let t = 1

2r otherwise.

For any s < t, there is an ordinal α ∈ OrdM with s ≤ s(α) < r such that for any

β ∈ OrdM , if s(β) ≥ r, then β < α.

In particular, if d is an ultrametric, then {s(α) : α ∈ OrdM} is dense in (0, 1] and

{α ∈ OrdM : s(α) < 1} has no least element.
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Proof. Fix positive s < t and let δ = 1 − s
t (implying that s = t(1 − δ)). Assume without

loss of generality that tδ < 1
3r. Let

a = [x : max(ϕr(x), chnr(x)) < 0 ∼ tδ] .

Note that every element of a is an element of Cr. Let b = {gr(x) : x ⊏− a}. Note that since

the collection of chains in M is {x ∈M : chnM (x) = 0}, it is metrically closed. Hence every
element of b is a chain. It is also easy to see that every element of b is r(1 − δ)-discrete
(regardless of whether d is an ultrametric).

Let c = {x ⊏− b : x is well-ordered}. Note that c is a set in M . Also note that for any

β ∈ OrdM , if s(β) ≥ r, then some element of c has order type β. The equivalence relation
∼= is discretely definable on c, so we can form the set f = {{y ⊏− c : x ∼= y} : x ⊏− c}.
By Lemma 4.9, the set f is t(1 − δ)-discrete (regardless of whether d is an ultrametric) or,
in other words, s-discrete. We can find a formula φ(x, y) with the property that for any
x, y ⊏− f , φ(x, y) ∈ {0, 1} and φ(x, y) = 0 if and only (∀z ⊏− x)(∀w ⊏− y) otp(z) ≤ otp(x).
This formula defines a linear order on f which by a standard argument is a well-order. Let

α = otp({{y : y ⊏− f, φ(x, y) = 0} : x ⊏− f}).

Since f contains representatives of all ordinals β with s(β) ≥ r, we must have that α is
larger than any such β. Therefore it cannot be the case that s(α) ≥ r. On the other hand,
since f is s-discrete, it follows that s(α) ≥ s, as required.

The last statements in the theorem obviously follow from the rest of it. □

Corollary 4.11. If M |= MSE has no infinite, uniformly discrete sets, then M has non-
standard naturals.

Proof. By Corollary 2.8 and induction, any model of MSE contains hereditarily finite sets
of every externally finite cardinality. Therefore for any standard natural n, n ∈ OrdM and
s(n) = 1. Theorem 4.10 implies that there are ordinals α in M (which must be internally
finite) such that s(α) < 1. □

The behavior of ultrametric models of MSE in Theorem 4.10 is reminiscent of the behavior
of ω in models of Cantor- Lukasiewicz set theory, as discovered by Hájek [15, Th. 4.17]. In
particular, they both exhibit a manifestation of the sorites paradox: an inability to formalize
an induction principle of the form

φ(0) = 0 ∀α[(∀β < α)(φ(β) = 0) → φ(α) = 0]

∀α(φ(α) = 0)

for a real-valued predicate φ(x) on some class of ordinals. For C L0, this induction principle
cannot hold even for ω, but, as we will see in Theorem 6.15, models of MSE can have
arbitrarily large standard ordinals. Theorem 4.10 is also of course similar to the non-
existence of β-models of NFU, although the mechanism by which models of NFU are ill-
founded is different. One might idly wonder what could happen if we were to restrict
excision to stratified formulas.

What is unclear at the moment is the status of non-ultrametric models of MSE. Theo-
rem 4.10 does not preclude the possibility of β-models of MSE (i.e., models in which OrdM is
externally well-founded), but it seems unlikely that they exist. Every model of MSE we know
how to produce contains a set that is an ultrametric model of MSE, whereby Theorem 4.10
applies. This leaves the following question.

Question 4.12. Does MSE have any β-models? Is it true that for any M |= MSE, {s(α) :

α ∈ OrdM} is dense in (0, 1]?
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Given the behavior of the models constructed in Section 6, we conjecture that MSE has
no β-models and {s(α) : α ∈ OrdM} is always dense in (0, 1].

Finally, although this is more or less a cosmetic nicety, we would like to show that we
can build canonical ‘tokens’ representing well-order types, i.e., elements of M that somehow
canonically represent a well-order type α. In NFU, this is accomplished by taking {x :
otp(x) = α}. In ZF and GPK+

∞, this is accomplished by taking the von Neumann ordinal
of that order type. Neither of these approaches will work for MSE, so we will have to do
something new.

Definition 4.13. Given a uniformly discrete set a, a set b ⊑ a × VM , and an element
c ⊏− a, we write b[c] for the class {f : ⟨c, f⟩ ⊏− b}. For any chain a ∈ M |= MSE and any set
b ⊑ a× VM , the closed chain union of b is

χ(b) :=

{⊔
{b[f ] : f ⊏− a, f ⊑ c} : c ⊏− a

}
.

Given a uniformly discrete chain a ∈M |= MSE, the order token of a is the class

otok(a) := {χ(b) : b ⊑ a× VM}.

Theorem 4.14. Fix M |= MSE

(1) otok(a) is a set for any uniformly discrete chain a.
(2) For any r > 0, the map x 7→ otok(a) is explicitly definable on the class of r-discrete

chains.
(3) If a and b are well-ordered uniformly discrete chains, then otp(a) ≤ otp(b) if and

only if otok(a) ⊑ otok(b).

Proof. 1 and 2 follow from Proposition 2.13 and Lemma 2.18.
For 3, assume that otp(a) ≤ otp(b). Let this be witnessed by an order isomorphism

f : a → b to some initial segment of b. For any c ⊑ a × VM , we can form the set
c = {⟨f(x), y⟩ : ⟨x, y⟩ ⊏− c} (because the map ⟨x, y⟩ 7→ ⟨f(x), y⟩ is definable) and we
immediately have that χ(c) = χ(cf ). Therefore otok(a) ⊑ otok(b).

Conversely, assume that otok(a) ⊑ otok(b). Let r be such that a and b are r-discrete.
Find c ⊑ b × VM such that d(a, χ(c)) < 1

2r. By Lemma 4.9, we have that a and χ(c) are
order-isomorphic as chains. Let this be witnessed by f : a → χ(c). For any x ⊏− a, let g(x)

be the smallest element of b such that f(x) ⊑
⋃
{c[z] : z ⊏− b, z ⊑ g(x)}. (This is a set by

Proposition 2.2 and the fact that a and b are r-discrete.) g is an injective order-preserving
map from a to b, so by a standard argument, we have that otp(a) ≤ otp(b). □

Now of course, given otok(a), we can build a canonical well-ordered chain with the same
order type as a, namely

ord(a) := {otok(z) : z is a well-ordered uniformly discrete chain, otp(z) < otp(a)}.

One can show that x 7→ ord(x) is explicitly definable on the class of r-discrete well-ordered
chains for any r > 0.

Naturally, we could attempt to do something similar to Definition 4.13 with cardinalities,
but without some form of the axiom of choice, we only seem to be able to build tokens
representing equivalence classes of the ≈∗ relation (where x ≤∗ y if there is a surjection
from some subset of y onto x and x ≈∗ y if x ≤∗ y and y ≤∗ x). Specificially, if we

define ctok∗(a) := {{π1(x) : x ⊏− y} : y ⊑ a× VM}, we then have that a ≈∗ b if and only if
ctok∗(a) = ctok∗(b) for any uniformly discrete a and b. This raises an obvious question.
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Question 4.15. Is there a function ctok(x) that is definable on the class of r-discrete
sets for each r > 0 such that for any uniformly discrete a and b, a ≈ b if and only if
ctok(a) = ctok(b)?

5. Formalizing MSE in continuous logic

Given a metric set structure (M,d,⊏−), we can build a general structure11 (M, e) by taking
the function e : M2 → [0, 1] to be the sole predicate. After doing so, the original structure
can be recovered by taking d(x, y) = supz |e(z, x)−e(z, y)| and ⊏− = {(x, y) ∈M2 : e(x, y) =
0}. Our goal in this section is to characterize the structures that arise in this way and show
that they form an elementary class in the sense of continuous logic.

Let Le be the language with a single [0, 1]-valued predicate symbol e. Given any Le-
structure (M, e), we can define a pseudo-metric

de(x, y) := sup
z

|e(z, x) − e(z, y)|.

Since this is a formula in the sense of continuous logic, de is a definable predicate on any Le-
structure. Note that by construction, for any Le-structure (M, e) and a ∈ M , the function
y 7→ e(a, y) is 1-Lipschitz with regards to de.

The first thing we need to do is write out an axiom that guarantees that e(x, b) is a
distance predicate with regards to de for any choice of b. This is implicitly done in [1,
Ch. 9], but the characterization of distance predicates there does not cover the possibility
of an empty definable set. This is easy enough to add in by hand, but we will take the
opportunity to make the paper more self-contained and give a cleaner12 axiomatization that
also covers both cases.

Definition 5.1. The H-extensionality axiom is the Le-condition

sup
xy

|e(x, y) − inf
z

min(de(x, z) + 2e(z, y), 1)| = 0.

We say that an Le-structure M is H-extensional if it satisfies the H-extensionality axiom.

Note that the H-extensionality axiom could more conventionally be written

∀x∀y(e(x, y) = inf
z

min(de(x, z) + 2e(z, y), 1)).

Given an Le-structure (M, e), we write M/e for the de = 0 quotient of M and we write

M/e for the completion of this under de. Given a ∈M , we write [a]e for the corresponding

element of M/e, which we regard as a subset of M/e.

Lemma 5.2. Fix an Le-structure (M, e). M satisfies the H-extensionality axiom if and only
if for any b ∈M , the function x 7→ e(x, b) is 1-Lipschitz with regards to de and if f(x) is the

extension of e(x, b) toM/e, then for any a ∈M/e, f(a) = inf{de(a, c) : c ∈M/e, f(c) = 0},
where inf ∅ = 1.

Proof. For the ⇒ direction, suppose that M satisfies the H-extensionality axiom and fix
b ∈M . We have by the H-extensionality axiom that e(x, b) = infz min(de(x, z) + 2e(z, b), 1)
for all x. The function x 7→ min(de(x, z) + 2e(z, b), 1) is 1-Lipschitz with regards to de for

11As defined in [12]. Such structure could also be described as metric structures without a metric.
12The proof of Lemma 5.2 implicitly contains a proof of the following more general fact: In any metric

structure M with a [0, r]-valued metric, a formula φ(x) is the distance predicate of a (possibly empty)

definable set if and only if M |= supx |φ(x) − infz min(d(x, z) + 2φ(z), r)|. This is a slight modification of

the condition E2 in [1, Ch. 9] that obviates the need for E1.
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any z, therefore e(x, b) is as well (since it is the infimum of a family of 1-Lipschitz functions).

Let f(x) be the extension of e(x, b) to M/e.

Fix a ∈M/e such that f(a) < 1. Also fix ε > 0. Since M/e is dense in M/e, we can find
c0 ∈ M such that de(a, [c0]e) <

1
3ε and f([c0]e) = e(c0, b) < 1. Note that f(a) < f([c0]e) =

e(c0, b) + 1
3ε. Fix δ > 0 with δ < 1

4ε, δ < e(c0, b), and e(c0, b) + δ < 1.
Suppose we are given cn ∈M with e(cn, b) ≤ e(c0, b) < 1 for some n ∈ N. If e(cn, b) = 0,

stop the construction and set cm = cn for all m > n, otherwise we can find cn+1 ∈M such
that

de(cn, cn+1) + 2e(cn+1, b) < e(cn, b) + min(4−nδ, 12e(c0, b))

by the H-extensionality axiom. In particular, this implies that

e(cn+1, b) <
1

2
e(cn, b) +

1

2
e(c0, b)

≤ e(c0, b) < 1.

We have at each n that e(cn+1, b) <
1
2e(cn, b) + 4−nδ. Recursively applying this bound

gives

e(cn, b) < 2−ne(c0, b) +

2n−2∑
k=n−1

2−kδ.

for any n > 0 with cn defined. This implies that the infinite sums we are about to manipulate
are all absolutely convergent and that (cn)n∈N is a Cauchy sequence.13 We have that

∞∑
n=0

(de(cn, cn+1) + 2e(cn+1, b)) <

∞∑
n=0

(
e(cn, b) + 4−nδ

)
,

∞∑
n=0

de(cn, cn+1) + 2

∞∑
n=0

e(cn+1, b) <

∞∑
n=0

e(cn, b) +

∞∑
n=0

4−nδ,

∞∑
n=0

de(cn, cn+1) +

∞∑
n=0

e(cn+1, b) + e(c∞+1, b) < e(c0, b) +
4

3
δ,

∞∑
n=0

de(cn, cn+1) < e(c0, b) +
4

3
δ.

Let g = limn→∞[cn]e. Note that e(g, [b]e) = 0. We now have that

de(a, g) ≤ de(a, [c0]e) + de([c0]e, g)

<
1

3
ε+

∞∑
n=0

de(cn, cn+1)

<
1

3
ε+ e(c0, b) +

4

3

1

4
ε

<
1

3
ε+ f(a) +

1

3
ε+

1

3
ε

= f(a) + ε.

Since we can do this for any ε > 0, we have that inf{de(a, x) : f(x) = 0} ≤ f(a) whenever
f(a) < 1. If f(a) = 1, then this inequality holds anyway, so the inequality holds in all cases.

13Since
∑2n−2

k=n−1 2−k = 2−n+2 − 2−2n+2 < 2−n+2, we have that e(cn, b) < 2−n(e(c0, b) + 4δ). This in

turn implies that for any n at which cn+1 is defined, de(cn, cn+1) < 2−n(e(c0, b) + 4δ) + 4−nδ.
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For the other inequality, first assume that {x ∈ M/e : f(x) = 0} is empty. By the

previous part, this implies that f(a) = 1 for all a ∈ M/e. Therefore the required equality

holds. Now assume that {x ∈ M/e : f(x) = 0} is non-empty. Fix a ∈ M/e and let
r = inf{de(a, x) : f(x) = 0}. Fix ε > 0 and find some a′ ∈ M such that de(a, [a

′]e) <
1
6ε.

Since f is 1-Lipschitz, we must have that f(a) < f([a′]e) + 1
6ε = e(a′, b) + 1

6ε.

Find some c ∈ M/e such that f(c) = 0 and de(a, c) < r + 1
3ε. Find g ∈ M such that

de(c, [g]e) <
1
3ε. Since f(x) is 1-Lipschitz, we have that f([g]e) = e(g, b) < 1

3ε. By the
H-extensionality axiom, e(a′, b) ≤ de(a

′, c′) + 2e(c′, b), so we have that

f(a) < e(a′, b) +
1

6
ε

≤ de(a
′, c′) + 2e(c′, b) +

1

6
ε

< de(a
′, c′) + 2

1

6
ε+

1

6
ε

≤ de(a, c) +
2

6
ε+ 2

1

6
ε+

1

6
ε

< r +
1

6
ε+

2

6
ε+ 2

1

6
ε+

1

6
ε

= r + ε.

Since we can do this for any ε > 0, we have that f(a) ≤ r = inf{de(a, x) : f(x) = 0}.
Therefore both directions of the inequality hold and we have that f(a) = inf{de(a, x) :

f(x) = 0} for any a ∈M/e.
For the ⇐ direction, suppose that e(x, b) is 1-Lipschitz with regards to de for any b ∈M

and that for any a ∈ M/e, f(a) = inf{de(a, x) : f(x) = 0}, where f(x) is the unique

continuous extension of e(x, b) to M/e. Fix a ∈ M and let r = e(a, b) = f([a]e). Fix

ε > 0. Find c ∈ M/e such that f(c) = 0 and d([a]e, c) < r + 1
4ε. Find c′ ∈ M such that

d(c, [c′]e) <
1
4ε. Since f(x) is 1-Lipschitz, we have that f([c′]e) = e(c′, b) < 1

4ε. Note also

that de(a, c
′) < r + 2

4ε. We now have that

inf
z

min(de(a, z) + 2e(z, b), 1) ≤ de(a, c
′) + 2e(c′, b)

≤ r +
2

4
ε+ 2e(c′, b)

≤ r +
2

4
ε+ 2

1

4
ε

≤ r + ε.

Since we can do this for any ε > 0, we have that

inf
z

min(de(a, z) + 2e(z, b), 1) ≤ inf{de(a, x) : f(x) = 0} = e(a, b).

For the other direction of the inequality, let s = infz min(de(a, z) + 2e(z, b), 1). If s = 1,

then the above implies that f(x) = 1 for all x ∈ M/e, so the H-extensionality axiom is
satisfied. Otherwise assume that s < 1 and fix ε > 0 with s + ε < 1. Find c ∈ M such
that min(de(a, c) + 2e(c, b), 1) < s + ε. We must have that de(a, c) + 2e(c, b) < s + ε. By
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assumption, e(c, b) = f([c]e) = inf{de([c]e, x) : f(x) = 0}. Therefore

e(a, b) = inf{de([a]e, x) : f(x) = 0} ≤ de(a, c) + e(c, b)

< de(a, c) + 2e(c, b)

< s+ ε.

Since we can do this for any ε > 0, we have that e(a, b) ≤ s = infz min(de(a, z)+2e(z, b), 1).
Therefore e(a, b) = infz min(de(a, z) + 2e(z, b)), 1 for any a, b ∈M and the H-extensionality
axiom holds. □

Note that since y 7→ e(a, y) is automatically 1-Lipschitz with regards to de, the H-
extensionality axiom implies that (x, y) 7→ e(x, y) is 2-Lipschitz with regards to de. This

means that e(x, y) extends to a unique continuous function on M/e. By an abuse of no-

tation we will also denote this as e. Note that in this case, (M/e, e) still satisfies the
H-extensionality axiom (and is in fact elementarily equivalent to (M, e) as an Le-structure).

In particular, by Lemma 5.2 applied to the structure (M/e, e), we have that x 7→ e(x, b) is

a distance predicate for any b ∈M/e.

Given an Le-structure M for which e(x, y) extends to M/e, write ⊏−e for the relation

{(x, y) ∈ (M/e)2 : e(x, y) = 0}. Now we will see the manner in which the H-extensionality
axiom characterizes metric set structures.

Proposition 5.3. Fix an Le-structure (M, e). (M, e) satisfies the H-extensionality axiom

if and only if (M/e, de,⊏−e) exists and is a metric set structure.

Proof. This follows from Lemma 5.2 and the fact that (de)H({x : x ⊏−e a}, {x : x ⊏−e b}) =

supz |e(z, a) − e(z, b)| = de(a, b) for all a, b ∈M/e. □

Axiomatizing excision will be more technical. For convenience, we’ll take restricted Le-
formulas to be defined as in [8, Sec. 1.3]: the only atomic formulas are those of the form
e(x, y) and we take as connectives φ+ψ, max(φ,ψ), min(φ,ψ), the constant 1, and r ·φ for
rational r. We should note though that the scheme described here would be sufficient with
any definition of restricted formula, such as the one in [1, Sec. 3].

Given a restricted Le-formula φ, we can form a corresponding L⊏−-formula by replacing
each instance of e(x, y) with the L⊏−-formula infz⊏−y d(x, z) where z is taken to be any variable
distinct from x and y. We write φ⊏− for the formula resulting from this translation. By an
abuse of notation, we will write v(φ) for v(φ⊏−).

Later on, we will also need a way to translate L⊏−-formulas back to restricted Le-formulas.
The difficulty here is that we allowed real coefficients in L⊏−-formulas but only rational
coefficients in Le-formulas. With this issue in mind say that an L⊏−-formula is rational if all
coefficients occurring in it are rational numbers. We define the Le-formula φe corresponding
to a rational L⊏−-formula φ inductively as follows:

• (d(x, y))e = de(x, y),
• (infx⊏−y φ)e = infx min(φe + 2v(φ)e(x, y), v(φ)), and
• (supx⊏−y φ)e = −(infx⊏−y −φ)e,

with the other elements of the translation defined in the obvious way. The following facts
are either standard results in continuous logic or easily verified.

Fact 5.4. Fix an H-extensional Le-structure (M, e) with (M,de) complete.

(1) For any Le-formula φ(x̄) and any ā ∈M , φ(M,e)(ā) = φ
(M,de,⊏−e)
⊏− (ā).

(2) For any rational L⊏−-formula φ(x̄) and any ā ∈M , φ(M,de,⊏−e)(ā) = φ
(M,e)
e (ā).
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(3) For any L⊏−-formula φ(x̄) and ε > 0, there is a rational L⊏−-formula ψ(x̄) such that
|φ(M,de,⊏−e)(ā) − ψ(M,de,⊏−e)(ā)| < ε for all ā ∈M .

It follows from Lemma 1.6 and Fact 5.4 that if (M, e) is H-extensional with (M,de) com-
plete, then for any restricted Le-formula φ(x̄), the function x̄ 7→ φM (x̄) is 2v(φ)-Lipschitz
with regards to the max metric on tuples induced by de. By passing to the completion
(M/e, de), this implies the same for any H-extensional (M, e).

For any formula φ ∈ Le, we define

εφ :=
1

max(6v(φ), 3)
.

Note that for any H-extensional (M, e), if |φM (ā) − φM (b̄)| ≥ 1
2 , then de(ā, b̄) > εφ.

Definition 5.5. The axiom scheme of excision is the collection of Le-conditions of the form

sup
ȳ

inf
z

sup
x

max(min(e(x, z),−φ(x, ȳ)),min(εφ − e(x, z), φ(x, ȳ) − 1)) ≤ 0

for each restricted Le-formula φ(x, ȳ) (not containing z as a free variable).
Given an H-extensional Le-structure M , we say that M satisfies Le-excision to mean

that M satisfies the axiom scheme of excision.

The axiom scheme of excision can be more conventionally stated like this: For all ȳ,
δ > 0, and φ(x, ȳ) ∈ Le, there is a z such that for all x,

• if φ(x, ȳ) ≤ −δ, then e(x, z) < δ and
• if e(x, z) ≤ εφ − δ, then φ(x, ȳ) < 1 + δ.

It is also sufficient to assume merely that this holds for sufficiently small δ > 0. This is
clearly an approximation of a certain case of the excision principle in MSE, but we will
now show that in H-extensional M with (M,de) complete, the axiom scheme of excision is
enough to imply full excision.

Lemma 5.6. Fix an H-extensional Le-structure M with (M,de) complete. Suppose that M
satisfies Le-excision. For any a ∈M and r, s ∈ [0, 1] with r < s, there is a b ∈M such that
for any c ∈M , if e(c, a) ≤ r, then c ⊏−e b, and if c ⊏−e b, then e(c, a) < s.

Proof. For readability, we will write d for de and ⊏− for ⊏−e.
Let r0 = 2

3r + 1
3s, s0 = 1

3r + 2
3s, and b0 = a. For any n, let φn(x, y) = e(x,y)−rn

sn−rn .
At stage n, suppose we are given bn and rationals rn and sn with 0 < rn < sn. Since M

satisfies Le-excision, we have that for any γ > 0, there is an f ∈M such that

∀x(e(x, f) < γ ∨ φn(x, bn) > −γ) ∧ (εφn
− e(x, bn) < γ ∨ φn(x, bn) − 1 < γ).

Let bn+1 be such an f with

γ = δn := min

(
2−n−2

27
(s− r),

1

2
rn, εφn

)
.

We have that for any c ∈M , if e(c,bn)−rnsn−rn ≤ −δn (i.e., if e(c, bn) ≤ rn− δn(sn− rn)), then

e(c, bn+1) < δn. A fortiori, this implies that if e(c, bn) ≤ rn − δn, then e(c, bn+1) < δn.

On the other hand, if εφn
−e(c, bn+1) ≥ δn (i.e., if e(c, bn+1) ≤ εφn

−δn), then e(c,bn)−rn
sn−rn −

1 < δn and so e(c, bn) < rn+(1+δn)(sn−rn). Since δn ≤ εφn
, this implies that if c ⊏− bn+1,

then e(c, bn) < rn + 2sn.
Finally, pick rn+1 and sn+1 so that 2δn < rn+1 < sn+1 < 3δn, and move to the next

stage of the construction.
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Claim. (bn)n<ω is a Cauchy sequence.

Proof of claim. For any n > 0 and c ∈ M , we have that if c ⊏− bn, then e(c, bn+1) < δn ≤
2−n−2

27 (s − r) and also that if c ⊏− bn+1, then e(c, bn) < rn + 2sn < 9δn−1 ≤ 2−n−1

3 (s − r).

Therefore, by H-extensionality, d(bn, bn+1) ≤ 2−n−1

3 (s − r). Since we can do this for any
positive n, the claim follows. □claim

Let b = limn→∞ bn. b is an element of M since (M,d) is complete.

Claim. For any c ∈M , if e(c, a) ≤ r, then c ⊏− b.

Proof of claim. Since e(c, a) ≤ r and since δ0 ≤ 2−2

27 (s − r) < 1
3 (s − r), we have that

e(c, b0) = e(c, a) < r0 − δ0. Therefore, r(c, b1) < δ0. For any n, suppose that we know that
e(c, bn+1) < δn. We then have that

e(c, bn+1) < δn

< 1
2rn+1 (by our choice of rn+1)

≤ rn+1 − δn+1 (since δn+1 ≤ 1
2rn+1).

Hence, e(c, bn+2) < δn+1 ≤ 2−n−1

27 (s− r).

Therefore e(c, b) < 2−n−1

27 (s − r) + d(bn+2, b) for every n by induction. Since bn → b we
have that e(c, b) = 0, i.e., c ⊏− b. □claim

Finally we just need to verify that if c ⊏− b, then e(c, a) < s. By the above estimate, we

know that d(b1, b) ≤
∑∞
n=1

2−n−1

3 (s− r) = 1
6 (s− r). We have

d(a, b1) = d(b0, b1) ≤ max(δ0, r0 + (1 + δ0)(s0 − r0))

≤ max
(
1
2r0, r0 +

(
1 + 1

108

)
1
3 (s− r)

)
< max

(
1
2r0, r0 + 5

4 · 1
3 (s− r)

)
= 1

4r + 3
4s.

Therefore,

d(a, b) ≤ d(a, b1) + d(b1, b) <
1
4r + 3

4s+ 1
6 (s− r) = 1

12r + 11
12s < s.

So if c ⊏− b, then there is an f ⊏− a such that d(c, f) < s, implying that e(c, a) < s, as
required. □

Proposition 5.7. Let (M, e) be an H-extensional Le-structure with (M,de) complete. (M,de,
⊏−e) |= MSE if and only if (M, e) satisfies Le-excision.

Furthermore, all models of MSE arise in this manner.

Proof. Let χ(x, ȳ, z) = max(min(e(x, z),−φ(x, ȳ)),min(εφ−e(x, z), φ(x, ȳ))). Suppose that
(M,de,⊏−e) |= MSE. Fix a restricted Le-formula φ(x, ȳ). Fix a tuple of parameters ā. Let
b =

[
x : φ⊏−(x, ā) < 0 ∼ 1

2

]
. Now for any c, we have that if φ(c, ā) ≤ 0, then e(c, b) = 0. So

min(e(c, b),−φ(c, ā)) ≤ 0. Moreover, if φ(c, ā) ≥ 1, then de(c, f) > εφ for all f ⊏−e b (since
these all satisfy φM (f, ā) < 1

2 ). Therefore e(c, b) ≥ εφ. So min(εφ − e(c, b), φ(c, ā)) ≤ 0.
Since we can do this for any c ∈ M , we have that (M, e) |= supx χ(x, ā, b) ≤ 0, whereby
(M, e) |= infz supx χ(x, ā, z) ≤ 0. Since we can do this for any ā ∈ M , we have that
(M, e) |= supȳ infz supx χ(x, ȳ, z). Finally since this holds for any restricted Le-formula, we
have that (M, e) satisfies Le-excision.

Now assume that (M, e) satisfies Le-excision. Fix an L⊏−-formula φ(x, ȳ), ā ∈ M , and
r < s. By passing to r′ and s′ with r < r′ < s′ < s if necessary, we may assume that
r and s are rational. By Fact 5.4, we can fix a rational L⊏−-formula ψ(x, ȳ) such that
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s−r

∣∣∣ < 1
6 for all x and ȳ. Fix δ > 0 with δ < 1

2ε3ψ−1. Note that δ < 1
2 .

Apply Le-excision to the restricted Le-formula 3ψe(x, ā) − 1 to get b ∈M such that for all
c ∈M , if ψe(c, ā) ≤ 1

3−
1
3δ, then e(c, b) < δ and if e(c, b) < ε3ψ−1−δ, then ψe(c, ā) < 2

3 + 1
3δ.

Apply Lemma 5.6 to b to get a set f such that if e(c, b) ≤ δ, then c ⊏− f and if c ⊏− f , then
e(c, b) ≤ 1

2ε3ψ−1 < ε3ψ−1 − δ.
For any c ∈ M , suppose that φ(c, ā) ≤ r. We then have that ψ(c, ā) = ψe(c, ā) <

1
6 < 1

3 − 1
3δ. Therefore, e(c, b) < δ and so c ⊏− f . On the other hand, suppose that

c ⊏− f . We then have that e(c, b) < ε3ψ−1 − δ. Therefore ψe(c, ā) < 2
3 + 1

3δ, implying that
φ(c,ā)−r
s−r < 2

3 + 1
3δ + 1

6 < 1 and so φ(c, ā) < s.

Since we can do this for any φ(x, ā) and r < s, we have that (M,de,⊏−e) |= MSE.
The ‘Furthermore’ statement follows from the fact that if (M,d,⊏−) |= MSE, then (M, e)

(where e is defined from ⊏− and d) is H-extensional and satisfies Le-excision. □

Given Proposition 5.7, we will also use MSE to denote the Le-theory consisting of the
H-extensionality axiom and the axiom scheme of excision.

6. Constructing models of MSE

In order to construct models of MSE, we need to borrow techniques from the construction
of models of GPK. The construction also has something of the flavor of the construction of
models of NFU in that it involves non-standard models of another set theory. In order to
show that arbitrary metric spaces can be a set of Quine atoms14 in a model of MSE, we will
use a construction that combines elements of the tree structures in [19] and the construction
presented at the end of [6, Sec. 2]. The construction we give here could be generalized to
allow certain other metric set structures to be embedded in models of MSE, in the same
vein as [6, Sec. 2], but we have not pursued this here. We work in the context of ZF.

In the following definition, Q is intended to be a set of Quine atoms in our resulting
model, although the models we construct here always have precisely one additional Quine
atom.

Definition 6.1. Fix a set Q and a [0, 1]-valued metric d on Q. Assume that Q does not
contain any ordinal-indexed sequences. For any ordinal α, we let Tα(Q) be the set of all
α-sequences x satisfying that

• for every β < α, x(β) ⊆ Q ∪ Tβ(Q) and
• for every β < γ < α, x(β) ∩Q = x(γ) ∩Q and x(β) \Q = {y↾β : y ∈ x(γ) \Q}.

Let ⊏− ⊆ Tα(Q)2 be a binary relation such that

• for x ∈ Tα(Q) and y ∈ Q, x ⊏− y holds if and only if x = y,
• for x ∈ Q and y ⊏− Tα(Q) \ Q, x ⊏− y holds if and only if x ∈ y(β) for every b < α,

and
• for x ∈ Tα(Q) \ Q and y ∈ Tα(Q) \ Q, x ⊏− y if and only if x↾β ∈ y(β) for every
β < α.

Note that Tα(Q) is well-defined, as T0(Q) = Q ∪ {∅}.

14Recall that a Quine atom, sometimes called a self-singleton, is a set x satisfying x = {x}.
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For any x ∈ Tα(Q), we write tc(x) for the smallest subset of Tα(Q) such that {y : y ⊏−
x} ⊆ tc(x) and if z ⊏− y ∈ tc(x), then z ∈ tc(x). For any x, y ∈ Tα(Q), we define

ρQ,α0 (x, y) := dH(tc(x) ∩Q, tc(y) ∩Q),

eQ,αβ (z, y) := inf
w⊏−y

ρQ,αβ (z, w),

ρQ,αβ+1(x, y) := max

(
sup
z⊏−x

eQ,αβ (z, y), sup
w⊏−y

eQ,αβ (w, x)

)
,

ρQ,αλ (x, y) := sup
β<λ

ρQ,αβ (x, y),

for all β and λ a limit ordinal, where sup∅ = 0 and inf ∅ = 1.

We will often suppress the superscript Q,α. Since the supremum of a family of pseudo-
metrics is always a pseudo-metric, an easy inductive argument shows that ρβ is a pseudo-
metric for every β ∈ Ord∪{∞}. It is also immediate that for any x ∈ Q, tc(x) = {x}, and
so for x, y ∈ Q, ρβ(x, y) = d(x, y) for every β. Finally, it can be shown that if x(γ) = y(γ)
for all γ ≤ β, then ρβ(x, y) = 0.

Also, while we will not need it, we should note that Tα(∅) is precisely the tree structure
of height α of [19] and in this case, ρβ(x, y) is 0 if and only if x↾β = y↾β and is 1 otherwise.
ρβ is of course also closely related to the ∼β relation of [13].

Lemma 6.2. For any a, b ∈ Tα, β 7→ ρβ(a, b) and β 7→ eβ(a, b) are both non-decreasing
functions of β.

Proof. Proceed by induction on β. Limit stages are obvious, so assume that we know that
γ 7→ ργ(a, b) and γ 7→ eγ(a, b) are increasing functions for any a, b ∈ Tα on the interval [0, β]
and consider ρβ+1(x, y).

If β = 0, then we just need to argue that ρ1(a, b) ≥ ρ0(a, b) = dH(tc(a) ∩ Q, tc(b) ∩ Q).
Suppose that ρ0(a, b) > r. Without loss of generality, this implies that there is a c ∈ tc(a)∩Q
such that inf{d(c, z) : z ∈ tc(b) ∩Q} > r. Since c ∈ tc(a) and c ⊏− c, there is an f ⊏− a such
that c ∈ tc(f). Since c ∈ tc(f) ∩ Q and since tc(g) ⊆ tc(b) for any g ⊏− b, we have that
ρ0(f, g) > r for any g ⊏− b. Therefore ρ1(a, b) ≥ r. Since we can do this for any r, we have
that ρ1(a, b) ≥ ρ0(a, b).

If β > 0, then for any γ ≤ β, we have that eγ(u, v) ≤ eβ(u, v) by the induction hypothesis,
so

max

(
sup
z⊏−a

eγ(z, b), sup
w⊏−b

eγ(w, a)

)
≤ max

(
sup
z⊏−a

eβ(z, b), sup
w⊏−b

eβ(w, a)

)
and therefore ργ(a, b) ≤ ργ+1(a, b) ≤ ρβ+1(a, b), as required. The fact that eβ+1(a, b) ≥
eβ(a, b) is immediate. □

Lemma 6.3. For any (Q, d) and ordinals α < β, there is a unique vα ∈ Tβ(Q) such
that (vα,⊏−) and (Vα,∈) are isomorphic and for any γ ∈ (α, β) and distinct a, b ⊏− vα,
ργ(a, b) = 1.

Proof. Fix an ordinal β. We will prove this for all α < β by induction. For V0 = ∅, the
statement is witnessed by the sequence v0(γ) = ∅ in Tβ(Q).

Now assume that for some α < β, the statement is known for all δ < α. If α is a
successor and equal to γ + 1, let vα be defined by vα(0) = {∅}, vα(σ + 1) = P(vγ(σ)), and
vα(λ) = {x : x is a λ sequence, (∀σ < λ)x↾σ ∈ vα(σ)} for any limit ordinal λ. Since the
statement holds for γ, we have that ργ is {0, 1}-valued on the ⊏−-elements of vγ , we get that
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ρα = ργ+1 is {0, 1}-valued on the ⊏−-elements of vα. Furthermore, since (vγ ,⊏−) is isomorphic
to (Vγ ,∈), it follows immediately that (vα,⊏−) is isomorphic to (Vα,∈).

If α is a limit, then let vα(σ) =
⋃
γ<α vγ(σ) for every σ < β. The required statements

are obvious. □

Definition 6.4. For any Q and α, we let τQ,α be the topology on Tα(Q) generated by sets
of the form {y ∈ Tα(Q) : ρβ(x, y) < ε} for x ∈ Tα(Q), β < α, and ε > 0.

It is immediate from basic topological facts that for any X ⊆ Tα(Q), there is a unique
smallest closed set X containing X. More importantly, we have the following.

Proposition 6.5. For any Q, limit α, and closed F ⊆ Tα(Q), there is an x ∈ Tα(Q) such
that F = {y ∈ Tα(Q) : y ⊏− x}.

Proof. For any β < α, let x(β) := {y ∈ Tβ(Q) : y extends to an element of F}. x is clearly
an element of Tα(Q). Furthermore, we clearly have that if y ∈ F , then y ⊏− x. So now we
just need to show the converse.

Suppose that y ⊏− x. We would like to show that y is in the closure of F and therefore
is in F . In order to do this, it is sufficient to show that inf{ρβ(y, z) : z ∈ F} = 0 for each
β < F . For each β < α, find z ∈ F such that y(β + 1) is an initial segment of z. We now
have that ρβ(y, z) = 0. Since we can do this for any β < α, we have that y is in the closure
of F . □

What will ultimately be relevant to us is that the above facts are first-order properties
of the structure (Vα+ω, α,Q, d,⊏−, Tα(Q)) (assuming Tα(Q) is an element of Vα+ω). This is
part of the motivation for Definition 6.7.

We will also need the following.

Lemma 6.6. Fix a metric space (Q, d) and a limit ordinal α. Let Q be the τQ,α-closure of

Q ⊂ Tα(Q). For any z ∈ Q, there is an x ∈ Q such that ρβ(x, z) = 0 for all β < α.

Proof. First we need to show that if x ∈ Q, then | tc(x) ∩ Q| = 1. Suppose that tc(x) ∩ Q
has more than one element. Let y and z be distinct elements of tc(x) ∩ Q. Suppose that
d(y, z) > r. We now immediately have that ρ0(x,w) > 1

2r for any w ∈ Q. Therefore x /∈ Q.
On the other hand, suppose that tc(x)∩Q = ∅. Then likewise, ρ0(x,w) = 1 for any w ∈ Q.
Therefore x /∈ Q.

Now we need to argue that if x ∈ Q, then for any y ⊏− x, y ∈ Q as well. Suppose y ⊏− x
and y /∈ Q. By definition, this implies that there is a β < α such that inf{ρβ(y, z) : z ⊏−
x} = r > 0, but this implies that ρβ+1(x,w) ≥ r for all w ∈ Q and so x /∈ Q.

For any x ∈ Q, let π(x) denote the unique element of Q that is in tc(x). We need to show
that ρβ(x, π(x)) = 0 for all β < α. Clearly ρ0(y, π(x)) = 0 for any y ∈ Q with π(y) = π(x).

Suppose that ργ(y, π(x)) = 0 for all γ < β and y ∈ Q with π(y) = π(x). If β is a limit, then
ρβ(x, π(x)) = 0. Assume that β = δ+ 1 for some δ. Fix y with π(y) = π(x). Fix z ⊏− y. We

clearly have that tc(z) ∩Q ⊆ tc(y) ∩Q. It also must be the case that z ∈ Q. Therefore we
must have that π(z) = π(y) = π(x) as well, so by the induction hypothesis, we have that
ρδ(z, π(x)) = 0. Since we can do this for any z ⊏− y, we have that ρδ+1(y, π(x)) = 0, as
required. □

Definition 6.7. Fix a tuple (Q, d,⊏−) as in Definition 6.1 and an infinite ordinal α such
that Tα(Q) is an element of Vα+ω. We will assume that restricted Le-formulas are elements
of Vα+ω.
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Let (M,αM , QM , dM ,⊏−M , T M ) be a structure elementarily equivalent to (Vα+ω, α,Q, d,
⊏−, Tα(Q)). We write ρMβ (x, y) and eMβ (x, y) for the functions in M given by Definition 6.1
computed internally.

Given any r ∈ RM satisfying |r| ≤ n for some standard natural n, the standard part of
r, written st(r), is the unique standard real satisfying r ≥ t if and only if st(r) ≥ t for all
standard rationals t.

A gauge on M is a non-increasing function s : αM → [0, 1] (where [0, 1] is the standard
unit interval) with s(0) = 1. An internal gauge on M is a non-increasing function s ∈ M
from αM to [0, 1]M with s(0) = 1. An internal gauge on M is ε-smooth if

• s(0) = s(1),
• s(β) = 0 for all sufficiently large β ∈ αM ,
• for every β ∈ αM , s(β) < s(β + 1) + ε, and
• for any limit λ ∈ αM , there is a β < λ such that s(β) = s(λ).

Given an internal gauge s on M , the standard part of s, written sst, is st ◦s.
Given a gauge s on M , we define the functions

ρs(x, y) := sup
β∈αM

min(ρMβ (x, y), s(β))

and es(x, y) = infw⊏−My ρs(x,w). For any internal gauge s we write ρs and es for the
corresponding quantities computed internally in M and we write ρsts and ests for their corre-
sponding standard parts.

Given two gauges s0 and s1 on M , we write ∥s0 − s1∥ for the quantity supβ∈αM |s0(β) −
s1(β)|.

Note that ρsts = ρsst and ests = esst for any M as in Definition 6.7. Since ρs(x, y) is the
supremum of a family of pseudo-metrics, it is itself a pseudo-metric. Finally, it is trivial
that for any gauge s on M , (T M , es) is an Le-structure.

In the following, we will write ‘(M as in 6.7.)’ to mean that the structure M =
(T M , αM ,RM ) satisfies the conditions in Definition 6.7.

Lemma 6.8. (M as in 6.7.) Fix a restricted Le-formula φ(x̄) and a tuple ā ∈ T M .

(1) For any gauges s and t on M ,

|φ(T M ,es)(ā) − φ(T M ,et)(ā)| ≤ v(φ)∥s− t∥.
(2) For any internal gauge s on M ,

st((φ(T M ,es)(ā))M ) = φ(T M ,ests )(ā),

where (φ(T M ,es)(ā))M is the value of φ(T M ,es)(ā) computed internally in M .

Proof. It is straightforward to show that for any a, b ∈ T M , |ρs(a, b) − ρt(a, b)| ≤ ∥s − t∥.
This implies likewise that for any a, b ∈ T M , |es(a, b) − et(a, b)| ≤ ∥s − t∥. From this, 1
follows by an induction argument. 2 also follows from an easy induction argument. □

Lemma 6.9. (M as in 6.7.) For any β ∈ αM ,

ρMβ+1(x, y) = sup
z∈T M

|eMβ (z, x) − eMβ (z, y)|.

Proof. This follows immediately from the fact that ρMβ is a pseudo-metric on T M and

ρMβ+1(x, y) is precisely the Hausdorff distance between {z : z ⊏−M x} and {z : z ⊏−M y} with

respect to ρMβ+1. □
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Lemma 6.10. (M as in 6.7.) Fix ε ∈ (0, 1]M and an ε-smooth internal gauge s on M . Let
de,s(x, y) := supz |eMs (z, x) − eMs (z, y)|. The following statements hold internally in M :

(1) ρs(a, b) ≤ de,s(a, b) ≤ ρs(a, b) + ε for all a, b ∈ T M .
(2) |es(a, b) − infz min(de,s(a, z) + 2es(z, b), 1)| ≤ ε for all a, b ∈ T M .

Proof. First note that by definition, de,s(x, y) is the Hausdorff pseudo-metric induced by
the pseudo-metric ρs(x, y). So in particular we also have that

de,s(x, y) = max

(
sup
z⊏−x

es(z, y), sup
w⊏−y

es(w, x)

)
.

For 1, fix a and b in T . If a and b are both ⊏−-empty, then de,s(a, b) = ρs(a, b) = 0. If one
of them is ⊏−-empty and the other isn’t, then de,s(a, b) = ρs(a, b) = 1. So assume that they
are both non-⊏−-empty.

Suppose that ρs(a, b) > r. This implies that there is a β ∈ αM such that min(ρβ(a, b), s(β)) >
r, which implies that ρβ(a, b) > r. If β is a limit ordinal, then ρβ(a, b) = supγ<β ργ(a, b),
so, since s is non-increasing, we may assume that β is not a limit ordinal. Since s(0) = s(1),
we may assume that β > 0 by Lemma 6.2. So let γ + 1 = β. We may now assume without
loss of generality that there is a c ⊏− a such that eγ(c, b) > r, implying that ργ(c, f) > r for
all f ⊏− b. Therefore we have that ρs(c, f) ≥ min(ρs(c, f), s(γ)) > r for all f ⊏− b, whence
es(c, b) ≥ r and de,s(a, b) ≥ r. Since we can do this for any r < ρs(a, b), we have that
de,s(a, b) ≥ ρs(a, b).

Now suppose that de,s(a, b) > r for some r > 0. We may assume without loss of generality
that there is a c ⊏− a such that es(c, b) > r. So in particular, ρs(c, f) > r for all f ⊏− b.
Therefore, for any such f , there is a βf ∈ αM such that min(ρβf

(c, f), s(βf )) > r. Since s is

ε-smooth, there is a largest γ ∈ αM such that s(γ) > r. Note that we must have γ ≥ βf for
all f ⊏− b. So now we actually know that ργ(c, f) > r for all f ⊏− b. Therefore eγ(c, b) ≥ r
and so ργ+1(a, b) ≥ r, whence ρs(a, b) ≥ min(ργ+1(a, b), s(γ+ 1)) > r− ε. Since we can this
for any r < de,s(a, b), we have that ρs(a, b) ≥ de,s(a, b) − ε, as required.

For 2, it follows from the ⇐ direction of the proof of Lemma 5.2 that es(a, b) = infz min(ρs(a, z)+
2e2(z, b), 1) for all a, b ∈ T M . It is immediate from part 1 that

| inf
z

min(de,s(a, z) + 2e2(z, b), 1) − inf
z

min(ρs(a, z) + 2e2(z, b), 1)| ≤ ε

for all a, b ∈ T M , so the required result follows. □

Lemma 6.11. (M as in 6.7.) Fix ε ∈ (0, 1]M and let s be an ε-smooth internal gauge on
M . For any15 Le-formula φ(ā, b̄) and any ā, b̄ ∈ T M ,

|φ(T M ,es)(ā) − φ(T M ,es)(b̄)| ≤ 2v(φ)de,s(ā, b̄),

where de,s(ā, b̄) = maxi<|ā| de,s(ai, bi).

Proof. We prove this by induction on formulas. If φ is e(x, y), then we have

|e(a0, a1) − e(b0, b1)| ≤ |e(a0, a1) − e(b0, a1)| + |e(b0, a1) − e(b0, b1)|
≤ ρs(a0, b0) + de,s(a1, b1)

≤ de,s(a0, b0) + de,s(a1, b1)

≤ 2de,s(a0a1, b0b1)

by Lemma 6.10. The argument for connectives and quantifiers the same as in Lemma 1.6. □

15Possibly non-standard, although we do not need this.
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Lemma 6.12. (M as in 6.7.) Fix ε ∈ (0, 1]M and let s be an ε-smooth internal gauge on
M . For any Le-formula φ(x, ȳ), M satisfies that

(T M , es) |= sup
ȳ

inf
z

sup
x

max(min(e(x, z),−φ(x, ȳ)),min(εφ − e(x, z), φ(x, ȳ) − 1)) ≤ 2v(φ)ε.

Proof. For any Le-formula φ(x, ȳ) and any ā ∈M , let B0 = {x ∈ T M : φ(T M ,es)(x, ā) ≤ 0}.
We need to argue that B0 is closed in the topology on T M given in Definition 6.4. Suppose

that c /∈ B0. This means that φ(T M ,es)(c, ā) > 0. Since es is 2-Lipschitz with regards
to ρs, this implies that there is a δ > 0 such that for any c′ ∈ T M with ρs(c, c

′) < δ,

φ(T M ,es)(c′, ā) > 0 as well. Since s is ε-smooth, there is a γ ∈ αM such that s(γ) = 0. By
Lemma 6.2, we know that if ργ(c, c′) < 1

2δ, then ρs(c, c
′) < δ. Therefore we have that the

set {x : ργ(x, c) < 1
2δ} is disjoint from B0. Since we can do this for any c /∈ B0, we have

that B0 is closed.
Let b be the unique element of T M coextensive with B0 (which exists by Proposition 6.5).

For any c ∈ T M , if φ(T M ,es)(c, ā) ≤ 0, then c ⊏− b by our choice of c and so es(c, b) = 0.
Therefore min(es(c, b),−φ(c, ā)) ≤ 0 for all c ∈ T M . On the other hand, if es(c, b) ≤ εφ,
then there is an f ⊏− b such that ρs(c, f) < εφ + σ for any σ > 0. Therefore, φ(c, ā) <
2v(φ)de,s(c, f) < 2v(φ)(εφ + σ+ ε) by Lemmas 6.10 and 6.11. Since 2v(φ)εφ < 1 and since
we can do this for any σ > 0, we have that φ(c, ā) ≤ 1 + 2v(φ)ε. Therefore min(εφ −
e(c, b), φ(c, ā) − 1) ≤ 2v(φ)ε for any c ∈ T M . □

Lemma 6.13. (M as in 6.7.) For any (external) gauge s on M with dense image in
[0, 1] and (standard) rational ε ∈ (0, 1], there is an ε-smooth internal gauge t such that
∥s− tst∥ ≤ ε.

Proof. Find standard n large enough that 1
n <

1
2ε. For each i < n, find βi ∈ αM such that

i
n ≤ s(βi) <

i+1
n . Note that since the range of s is dense, none of the βi’s are 0 or 1. Also

note that (βi)i<n is a decreasing sequence of ordinals. For any γ ∈ αM , let

t(γ) =


0 γ ≥ β0
i
n 0 < i < n, βi−1 > γ ≥ βi

1 βn−1 > γ

.

Clearly t(γ) = 0 for all sufficiently large γ. We also have that s(γ) < s(γ+1)+ 2
n < s(γ+1)+ε

for all γ ∈ αM . Finally, the limit ordinal condition in the definition of ε-smooth is clearly
met, so t is ε-smooth.

Now for any γ, we have that if t(γ) = 0, then γ ≥ β0 and so s(γ) ≤ 1
n < ε. If t(γ) ∈ (0, 1),

then there is a positive i < n such that βi−1 > γ ≥ βi, implying that i−1
n ≤ s(γ) ≤ i+1

n ,

so |s(γ) − t(γ)| = |s(γ) − i
n | < ε. And if t(γ) = 1, then s(γ) ≥ s(βn−1) ≥ n−1

n , so

|s(γ) − t(γ)| ≤ 1
n < ε. Therefore ∥s− t∥ ≤ ε, as required. □

In order to proceed we will need a fact from model theory. This is similar to the approach
typically used to build partially standard models of NFU.

Lemma 6.14. For any ordinal σ, there is an α > σ and a structure (M,αM ) ≡ (Vα+ω, α)
such that VMσ is isomorphic to Vσ and there is a set of M -ordinals less than αM that is
order-isomorphic to Q.

Proof. Let κ = |Vσ|. Let α = ℶ(2κ)+ . Expand (Vα+ω,∈) by Skolem functions. By [17, Lem.
7.2.12], we can find a Vσ-indiscernible sequence I with order type Q in some elementary
extension N of (Vα+ω,∈, α, Skolem functions) such that for any increasing sequence a0 <
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· · · < an−1 in I, there are ordinals δ0, . . . , δn−1 < α with tp(ā/Vσ) = tp(δ̄/Vσ). Let M
be the Skolem hull of Vσ ∪ I. For any element a of VMσ , there is a Skolem function f and
tuples b̄ ∈ Vσ and c̄ ∈ I such that a = f(b̄, c̄). By construction, there is a tuple δ̄ ∈ Vα
such that tp(c̄/Vσ) = tp(δ̄/Vσ). Since f(b̄, δ̄) ∈ Vσ, we have that f(b̄, c̄) = f(b̄, δ̄). Therefore
VMσ = Vσ, as required. □

Theorem 6.15. For any complete metric space (Q, d) with [0, 1]-valued metric and any
ordinal σ, there is a model N of MSE such that N contains a set of Quine atoms isometric
to (Q, d) and a 1-discrete set v such that (v,⊏−e) is isomorphic to (Vσ,∈) (and therefore

OrdN has standard part of length at least σ and if σ is infinite, N |= Inf(v)). In particular,
MSE is consistent.

Proof. Fix (Q, d) as in Definition 6.1. Fix some ordinal σ. We may assume that (Q, d) ∈ Vσ.
Apply Lemma 6.14 to get a structure M elementarily equivalent to Vα+ω for some α > σ
such that the standard part of M contains Vσ. Let J be a set of M -ordinals less than αM

order-isomorphic to Q. Since Tα(Q) is definable from Q and α, there is an element T M in
M realizing the same type over Q and αM . In this way we can regard M as a structure
satisfying the conditions of Definition 6.7.
J is also order-isomorphic to (0, 1) ∩Q. Let f be an order isomorphism witnessing this.

Define s : OrdM → [0, 1] by s(β) = inf{f(γ) : γ ∈ J, γ ≤ β} with inf ∅ = 1. This is clearly
a gauge on M . Let N = (T M , es).

We need to show that for any axiom φ of MSE (i.e., those listed in Definitions 5.1 and
5.5) and any ε > 0, N |= φ ≤ ε. If φ is the H-extensionality axiom, we can find with
Lemma 6.13 a 1

2ε-smooth internal gauge t such that ∥s − tst∥ ≤ 1
2ε. By Lemmas 6.8 and

6.10, we have that φN ≤ φ(T M ,et) + 1
2ε ≤ ε. If φ is the excision axiom for the formula ψ,

then we can do the same with a 1
2v(ψ)ε-smooth internal gauge t by Lemma 6.12. Since we

can do this for any φ ∈ MSE and ε > 0, we have that N |= MSE.
Finally we just need to verify that the set of Quine atoms isomorphic to (Q, d) and the

set isomorphic to Vσ exist in N . Let q be the element of T M coextensive with the set Q∗

defined in Lemma 6.6. We have that Q is a dense subset of q and furthermore ρβ agrees with
d on Q for all β < α, therefore (q, ρs) is isometric to (Q, d), since Q is metrically complete.

Finally, let v = vσ as defined in the proof of Lemma 6.3. Since σ(σ) = 1, we have that v
is 1-discrete. The relation x ⊏−e y (i.e., e(x, y) = 0) agrees with x ⊏− y for ⊏−-elements of v,
so we have that (v,⊏−e) is isomorphic to (Vσ,∈). □

One thing to note with regards to Theorem 6.15 is that if M satisfies the axiom of choice,
then the resulting structure N will satisfy the axiom of choice in all of its uniformly discrete
sets. Conversely, if there is a set x ∈ VMα witnessing the failure of the axiom of choice,
then the axiom of choice will fail for the corresponding 1-discrete set in N . Since we did
not use the axiom of choice at any point in our construction, this establishes that choice for
uniformly discrete sets is independent of MSE.

Recall that an Le-structure M is pseudo-finite if for every restricted Le-sentence φ and
r, if M |= φ < r, then there is a finite Le-structure N such that N |= φ < r.

Theorem 6.16. There is a pseudo-finite model of MSE.

Proof. Consider the structure M = (Vω+ω, ω,∅, . . . ). For each n ∈ N, let sn be the scale
on M defined by sn(i) = min(max(1 − i−1

n , 0), 1). This is easily seen to be 1
n -smooth. The

quotient of Tω(∅) by the pseudo-metric ρsn is finite, so any ultraproduct of the sequence
(Tω(∅)/ρsn , esn)n∈N is a pseudo-finite model of MSE by Lemmas 6.10 and 6.12. □
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It is straightforward to show that no pseudo-finite model of MSE can satisfy Inf, as no
pseudo-finite structure can interpret Robinson arithmetic.

7. Translation to  Lukasiewicz logic

It was observed in [2] that there is a strong connection between continuous logic and
 Lukasiewicz-Pavelka predicate logic. This logic extends  Lukasiewicz logic with 0-ary con-
nectives for each rational r ∈ [0, 1]. Since every unary connective f(x) in rational Pavelka
logic is piecewise linear and has that d

dxf(x) ∈ Z for all but finitely many x ∈ [0, 1], it is
immediate that x

2 is not a connective that can be formed in it. One might think that this
would prevent rational Pavelka logic from being logically complete in the sense of continuous
logic, but as pointed out in [2, Prop. 1.17], the connective x 7→ 1

2x is a uniform limit of
connectives in rational Pavelka logic:

lim
n→∞

max
1≤i≤n

min

(
i

n
, x ·− i

n

)
=

1

2
x

uniformly for all x ∈ [0, 1]. This implies that all [0, 1]-valued formulas in continuous logic
are uniform limits of  Lukasiewicz-Pavelka formulas.

We would like to take the opportunity to observe that more than this is true. On the
level of conditions rather than formulas, ordinary  Lukasiewicz logic is already logically
complete relative to continuous logic in the following sense: For every restricted formula
φ(x̄) (in either the sense of [1, Sec. 3] or the more permissive sense of [8, Sec. 1.3]), there is
a formula ψ(x̄) using only the connectives 1 and x ·− y such that for any metric structure
M and tuple ā ∈ M , φM (ā) ≤ 0 if and only if ψM (ā) ≤ 0.16 As a consequence of this,
any continuous first-order theory or type (in a language with [0, 1]-valued predicates) can be
axiomatized entirely in  Lukasiewicz logic. This is likely obvious to those who are well-versed
in  Lukasiewicz logic and its extensions, but we think it is worthwhile to write out explicitly.
This fact is a consequence of results in [7], but given the amount of translation needed to
apply these results, we will sketch an argument here.

Say that a restricted formula φ is a rational affine literal if it is a rational affine combi-
nation of atomic formulas. Say that a quantifier-free formula is in maximal affine normal
form or max ANF if it is maxn<N minm<Mn φnm where each φnm is a rational affine literal.
Say that a formula φ is in prenex max ANF if is a string of quantifiers followed by a max
ANF formula. It is not too hard to show (and is written out explicitly in [8, Prop. 1.4.12])
that every restricted formula is equivalent to a formula in prenex max ANF.

By McNaughton’s theorem [14, Thm. 1], for any integers a and b0, . . . , bn−1, the function
M(x̄; a, b̄) = min(max(a + b0x0 + b1x1 + · · · + bn−1xn−1, 0), 1) can be expressed using the
connectives of  Lukasiewicz logic.

Let φ ≤ r be a restricted closed condition. We may assume without loss of generality
that r = 0. By the above discussion we can rewrite φ as an equivalent prenex max ANF
formula

ψ(x̄) = qnt
x0

qnt
x1

qnt
x2

. . .max
n<N

min
m<Mn

(
anm +

∑
k<Knm

bnmkχnmk

)
where each qnt is either inf or sup and each χnmk is an atomic formula. Let ℓ some number
larger than the denominators of the coefficients in ψ. Consider now the formula ψ†(x̄)

16Note however that not all continuous functions form [0, 1]n → [0, 1] are uniform limits of expressions
in propositional  Lukasiewicz logic, as any such expression maps {0, 1}n to {0, 1}, so  Lukasiewicz-Pavelka

logic is strictly stronger in a sense that matters to continuous logic.
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defined as

qnt
x0

qnt
x1

qnt
x2

. . .max
n<N

min
m<Mn

M(χn,m,0, . . . , χn,m,Knm−1; ℓ! · anm, ℓ! · bn,m,0, . . . , ℓ! · bn,m,Knm−1).

Note that ψ† is equivalent to min(max(ℓ! ·ψ, 0), 1). We clearly have that in any structure M ,
ψ(ā) ≤ 0 if and only if ψ†(ā) ≤ 0, but this latter condition can be expressed in  Lukasiewicz
logic by McNaughton’s theorem. In particular, if we interpret M(−; ℓ!·anm, ℓ!·bn,m,0, . . . , ℓ!·
bn,m,Knm−1) as an expression in  Lukasiewicz logic, then we have that M |= ψ(ā) ≥ 0 if and
only if M satisfies

¬Qx0Qx1Qx3 · · ·
∨
n<N

∧
n<Mn

M(χn,m,0, . . . , χn,m,Knm−1; ℓ!·anm, ℓ!·bn,m,0, . . . , ℓ!·bn,m,Knm−1).

where Qxi is ∃xi if qntxi
is supxi

and ∀xi if qntxi
is infxi .

There are some minor differences in the treatment of equality (i.e., the metric) in contin-
uous logic and  Lukasiewicz logic and, relatedly, the intended semantics of continuous logic
is more specific than that of  Lukasiewicz logic, but for structures without equality (i.e.,
general structures such as our Le-structures) there is no difference in expressive power.

While the above discussion is sufficient to prove that it exists, we will now give an
explicit axiomatization of MSE is  Lukasiewicz logic. For the sake of compatibility with
the existing  Lukasiewicz logic literature, we will switch to the convention of regarding 1 as
true. As such, we will write x ϵ̂ y for 1 − e(x, y). We will write A → B for connective
1 − (A ·− B) = min(1 − A + B, 1) and ⊥ for 0. Formulas are formed from x ϵ̂ y using the
connectives → and ⊥ and the quantifiers ∃ and ∀. We’ll write  Lϵ̂ for this set of formulas,
which we will regard as a subset of the set of restricted Le-formulas (where we interpret ∃x
as supx and ∀x as infx). For an Le-structure M , a tuple ā ∈ M , and a formula φ(x̄) ∈  Lϵ̂,
we say that M satisfies φ(ā) if M |= φ(ā) = 1.

It is a basic fact that the connectives → and ⊥ can be used to define the following:
A ↔ B := 1 − |x − y|, ¬A := 1 − A, A ∧ B := min(A,B), A ∨ B := max(A,B), and
A&B := max(A+B − 1, 0).

First we need to define extensional equality: We will write x =e y as shorthand for the
formula ∀z(z ϵ̂ x ↔ z ϵ̂ y). (This is the same thing as 1 − de(x, y).) With this we can now
write the H-extensionality axiom as

∀x∀y(x ϵ̂ y ↔ ∃z(x =e z & z ϵ̂ y & z ϵ̂ y)). (1)

It is easy to verify that this is a literal transcription of Definition 5.1.
Given any formula φ ∈  Lϵ̂, let #φ be the number of instances of ϵ̂ in φ.17 For the axiom

scheme of excision, we have

∀ȳ∃z∀x(x ϵ̂ z ∨ (¬φ& ¬φ& ¬φ)) ∧ ((¬x ϵ̂ z & · · · & ¬x ϵ̂ z︸ ︷︷ ︸
6·#φ times

) ∨ (φ& φ& φ)) (2φ)

for every formula φ(x, ȳ) ∈  Lϵ̂ that does not contain z as a free variable. As this is not
a literal transcription of the axiom scheme of excision given in Definition 5.5, we need to
prove that it is equivalent.

Proposition 7.1. An Le-structure M is H-extensional and satisfies Le-excision if and only
if it satisfies (1) and (2φ) for all φ ∈  Lϵ̂.

17That is to say, the number of instances of e(x, y) in the corresponding restricted Le-formula.
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Proof. We clearly have that M is H-extensional if and only if it satisfies (1). Therefore we
may assume without loss of generality that (M,de) is a complete metric space.

An easy inductive argument shows that for any φ ∈  Lϵ̂, v(φ) = #φ. In particular, any
such φ is (2 · #φ)-Lipschitz relative to de.

For the ⇒ direction, by Proposition 5.7, (M,de,⊏−e) |= MSE. Fix a formula φ(x, ȳ) ∈  Lϵ̂
and a tuple ā ∈M . If #φ = 0, then φ(x, ā) is a constant that does not depend on ā, so (2φ) is
witnessed either by ∅M or by VM . If #φ > 0, consider the set b =

[
x : 1 − φ(x, ā) < 1

3 ∼ 2
3

]
.

For any c ∈ M , we have that if φM (c, ā) ≥ 2
3 , then (c ϵ̂ b)M = 1 and if (c ϵ̂ b)M = 1, then

φM (c, ā) > 1
3 . In particular, this implies that if φM (f, ā) ≤ 1

3 , then (f ϵ̂ b)M ≤ 1 − 1
6·#φ

(which implies that M satisfies ¬f ϵ̂ b & · · · & ¬f ϵ̂ b with 6 · #φ instances of ¬f ϵ̂ b).
Furthermore M satisfies

∀x(x ϵ̂ b ∨ (¬φ(x, ā) & ¬φ(x, ā) & ¬φ(x, ā)))

and

∀x(¬x ϵ̂ b& · · · & ¬x ϵ̂ b︸ ︷︷ ︸
6·#φ times

) ∨ (φ(x, ā) & φ(x, ā) & φ(x, ā)).

Since we can do this for any φ ∈  Lϵ̂ and any ā ∈ M , we have that M satisfies (2φ) for all
φ ∈  Lϵ̂.

For the ⇐ direction, assume that M satisfies (1) and (2φ) for all φ ∈  Lϵ̂. Fix a restricted
Le-formula φ(x, ȳ). Assume without loss of generality that φ(x, ȳ) contains an instance of
the predicate e and that φ(x, ȳ) is in prenex max ANF. Pick a sufficiently large ℓ > 1 and let
φ†(x, ȳ) be defined as above. In particular, we may think of φ†(x, ȳ) as a formula in  Lϵ̂ which
has the property that for any M and a, b̄ ∈M , (φ†)M (a, b̄) = min(max(φM (a, b̄), 0), 1).

Fix some ā ∈ M and δ > 0 with δ < 1 and apply (2¬φ†) to ā to get a b ∈ M such that
for every x ∈M ,

• either (x ϵ̂ b)M > 1 − δ or (¬¬φ†)M (x, ā) > 1−δ
3 and

• either (¬x ϵ̂ b)M > 1−δ
6·#φ† or (¬φ†)M (x, ā) > 1−δ

3 .

This means that for every x ∈M ,

• if φ(x, ā) ≤ 1−δ
3·ℓ! , then e(x, b) < δ and

• if e(x, b) = 0, then φ(x, ā) < 2+δ
3·ℓ! .

The first of these clearly implies that if φ(x, ā) ≤ −δ, then e(x, z) < δ. Now suppose that
for some c ∈ M , e(c, b) ≤ εφ − δ. We then have that there is a f ∈ M with (f ϵ̂ b)M = 1

such that d(c, f) < εφ. Since (f ϵ̂ b)M = 1, we have that e(f, b) = 0, so φ(f, ā) < 2+δ
3·ℓ! and

therefore φ(c, ā) < φ(f, ā) + 2v(φ)d(c, f) < 2+δ
3·ℓ! + 2v(φ)εφ <

1
ℓ! + 2v(φ)

6v(φ) <
1
2 + 1

3 < 1 < 1 + δ.

Since we can do this for any sufficiently small δ > 0, we have that M satisfies the excision
axiom for φ(x, ȳ). So since we can do this for any φ(x, ȳ) ∈ Le, we have that M satisfies
Le-excision. □

It is of course also possible to translate our axioms of infinity and other sentences described
in this paper to  Lukasiewicz logic, but doing so is much more involved.
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