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Abstract. We show that constructible models of arbitrary complete continuous first-order theories are
unique up to isomorphism.

Introduction

A classic result of early model theory is Vaught’s theorem that for a countable complete theory T , the
following are equivalent:

• T has a prime model.
• T has an atomic model.
• For every n, atomic types are dense in Sn(T ).

Moreover, a countable model is prime if and only if it is atomic, any two prime models are isomorphic, and
every prime model is ℵ0-homogeneous [6].

In the context of uncountable theories, the story becomes far more complicated. Primeness and atomicity
are no longer equivalent, and Shelah produced several examples of theories that have non-unique prime
models [5]. Earlier positive results regarding uncountable theories were specifically in the context of ℵ0-stable
theories [4]. In an unpublished result, Ressayre was able to show uniqueness of a special kind of prime model
without any assumptions regarding the theory, and the technique of this proof was extended greatly in
stability theory. (See [1, Sec. X.3] for a discussion of the history of these results.)

Definition 0.1. A sequence (bi)i<α of elements is a construction sequence over A if for each i, tp(bi/Ab<i)
is atomic. A model M ⊇ A is constructible over A if it can be enumerated by a construction sequence over
A. M is constructible if it is constructible over ∅.

Theorem 0.2 (Ressayre). Any two constructible models of a complete theory are isomorphic.

In the context of continuous logic, Vaught’s result is known to generalize [2, Cor. 12.9], but the proof
requires some modification and prime models are only guaranteed to be ‘approximately ℵ0-homogeneous,’
rather than ℵ0-homogeneous. The modified proof uses the kind of back-and-forth-with-error argument that
is common in continuous logic but also seems to rely on working with constructions of length ω. This can
sometimes cause difficulty when trying to generalize such arguments to constructions of uncountable length,
such as the back-and-forth argument in the proof of Theorem 0.2.

Another difficulty of generalizing certain results to continuous logic is the following phenomenon: In
discrete logic, one can show that for any a and b, tp(ab) is atomic if and only if tp(b) and tp(a/b) are atomic,
and this fact is typically used in proofs of Theorem 0.2. In continuous logic, we still have that if tp(b) and
tp(a/b) are atomic, then tp(ab) is atomic, but the converse does not in general need to hold. For a simple
example, consider a two-sorted structure (A,B, f) such that A is the circle S1 with the {0, 1}-valued discrete
metric, B is the circle with its ordinary path metric, and f : A → B is the identity map. For any a ∈ A and
b = f(a), we have tp(ab) and tp(a) are atomic, but tp(a/b) is not. This phenomenon is the root of many
failures of continuous generalizations classical results, such as Vaught’s never-two theorem and Lachlan’s
theorem on the number of countable models of a superstable theory, which was investigated extensively in
[3] using the notion of d-finiteness of types.
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These difficulties might lead one to suspect that Theorem 0.2 does not generalize to continuous logic, but,
as evidenced by the wide array of extensions of Ressayre’s technique in stability theory, the proof is robust
enough to be salvageable.

We would like to thank Itäı Ben Yaacov for some valuable discussion regarding this problem.

1. Augmented construction sequences

Note that while we originally stated Definition 0.1 for discrete logic, the definition makes sense verbatim
in continuous logic. Recall that a type tp(b/A) (with b a finite tuple1) is atomic if there is an A-definable
predicate D(x) such that for any c in the monster, D(c) = inf{d(c, b′) : b′ ≡A b}. As discussed in the
introduction, it is possible to show that if tp(bc/A) is atomic, then tp(b/A) is atomic.

Lemma 1.1. For any set of parameters A, construction sequence (bi)i<α over A, and model M ⊇ A, there
is an elementary map f : Ab<α → M that fixes A pointwise.

Proof. By a routine argument, atomic types must always be realized in models. The lemma then follows by
transfinite induction. □

Definition 1.2. Given a continuous first-order theory T in a language L and a set of parameters A, an
augmented construction sequence over A is a sequence (bi, φi, Ci,Si)i<α such that (bi)i<α is a construction
sequence over A and for each i < α, φi is the distance predicate of tp(bi/Ab<i), Ci ⊆ Ab<i is a countable
set of parameters Si ⊆ L is a countable language such that φi is definable in Si over Ci.

We will also sometimes refer to augmented construction sequences indexed by a subset of an ordinal (i.e.,
(bi, φi, Ci,Si)i∈X for X ⊆ α) with essentially the same definition. Most of our lemma will only be stated and
proven in ordinal-indexed case for the sake of notational simplicity, but there is no subtlety in generalizing
these statements to sequences indexed by subsets of ordinals, since any subset of an ordinal is canonically
order-isomorphic to an ordinal.

Note that it is immediate that any construction sequence can be extended to an augmented construction
sequence. Note, moreover, that φi is uniquely determined (up to logical equivalence) by tp(bi/Ab<i), but
Ci and Si are not. We have put the φi’s in explicitly as a bookkeeping device that will be useful later when
we show that under certain circumstances, (bi, φi, Ci,Si)i∈X is still an augmented construction sequence
(possibly over a different set of parameters) for some X ⊆ α. Here it could in principle be the case that the
same Ci’s and Si’s witness the construction but with different distance predicates, but it will be important
that the distance predicates do not actually change. That said, we will also frequently write (bi, φi, Ci,Si)i<α

as (bi, Ci,Si)i<α when we don’t need to emphasize that we are keeping track of specific distance predicates.

Definition 1.3. For any augmented construction sequence S = (bi, Ci,Si)i<α over A, we say that a pair
(A′, X) with A′ ⊆ A and X ⊆ α is construction-closed in S if for every i ∈ X, Ci ⊆ A′ ∪ {bi : i ∈ X}. We
say that (A′, X) is countable if |A′|+ |X| ≤ ℵ0.

Lemma 1.4. For any augmented construction sequence S = (bi, Ci,Si)i<α and any construction-closed pair
(A′, X) in S, S ↾X is an augmented construction sequence over A′.

Proof. This is immediate from the relevant definitions. □

Definition 1.5. b and c are weakly orthogonal over A if for any b′ ≡A b and c′ ≡A c, b′c′ ≡A bc. We write
b |⌣

wo

A
c to denote that b and c are weakly orthogonal over A.

Note that |⌣
wo

is clearly symmetric by definition.
The following lemma is what we will use in lieu of the standard fact in discrete logic that tp(ab) is atomic

if and only if tp(b) is atomic and tp(a/b) is atomic. For any set A in a metric space, we will write A for the
metric closure of A.

Lemma 1.6. Fix a set A.

(1) For any B and C, B |⌣
wo

A
C if and only if B |⌣

wo

A
C.

(2) For any B and C, the following are equivalent.

1Note that the elements of a construction sequence are required to be singletons.
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(a) B |⌣
wo

A
C

(b) tp(C/A) ⊢ tp(C/AB)
(c) tp(B/A) ⊢ tp(B/AC)

(3) For any B, C, and D, if D |⌣
wo

A
B and D |⌣

wo

AB
C, then D |⌣

wo

A
BC.

(4) For any finite tuple b and C, if tp(b/AC) is atomic with an A-definable distance predicate, then
b |⌣

wo

A
C.

(5) For any B and sequence (ci)i<α, if ci |⌣
wo

Ac<i
B for each i < α, then c<α |⌣

wo

A
B.

(6) For any finite tuple b and C, if b |⌣
wo

A
C and tp(b/A) is atomic, then tp(b/AC) is atomic with an

A-definable distance predicate.

Proof. 1 follows immediately from the definition of |⌣
wo

and the fact that B ≡A B′ if and only if B ≡A B′

(where we choose compatible enumerations of B and B′).
For 2, by symmetry we just need to show that 2a and 2b are equivalent. 2b is equivalent to the following:

For any C ′ ≡A C, C ′ ≡AB C. Since C ′ ≡AB C is equivalent to BC ′ ≡A BC, we clearly have that 2a implies
2b. Now assume 2b and fix B′ ≡A B and C ′ ≡A C. Fix an automorphism σ (fixing A pointwise) such
that σ(B′) = B. We now have that σ(C ′) ≡A C, whereby (B, σ(C ′)) ≡A BC. Applying σ−1 then gives
B′C ′ ≡A BC.

For 3, note that if tp(D/A) ⊢ tp(D/AB) and tp(D/AB) ⊢ tp(D/ABC), then tp(D/A) ⊢ tp(D/ABC).
The result now follows from 2.

For 4, the given condition clearly implies that tp(b/A) ⊢ tp(b/AC), so by 2, we have that b |⌣
wo

A
C.

For 5, we will prove by induction that for each i < α, tp(c<i/A) ⊢ tp(c<i/AB). Assume that we have
shown this for all j < i. If i is a limit ordinal or 0, we immediately have that tp(c<i/A) ⊢ tp(c<i/AB).
So let i = k + 1. We have by the induction hypothesis that tp(c<k/A) ⊢ tp(c<k/AB). Therefore by 2, we
have that tp(B/A) ⊢ tp(B/Ac<k). By assumption, tp(ck/Ac<k) ⊢ tp(ck/ABc<k), so by 2 again, we have
that tp(B/Ac<k) ⊢ tp(B/Ac<k+1), whereby tp(B/A) ⊢ tp(B/Ac<k+1). By 2 a third time, tp(c<k+1/A) ⊢
tp(c<k+1/AB).

For 6, we have that the set of realizations (in the monster) of tp(b/A) is A-definable and we have that the
set of realizations of tp(b/A) is the same as the set of realizations (in the monster) of tp(b/AC). Therefore
tp(b/AC) is atomic and its distance predicate is A-definable. □

For any X ⊆ α, we will write S ↾X for the restricted sequence (bi, φi, Ci,Si)i∈X . We will also abbreviate
A′ ∪ {bi : i ∈ X} as A′b∈X and

⋃
i∈X Si as SX .

Proposition 1.7. Fix an augmented construction sequence S = (bi, φi, Ci,Si)i<α over A. For any
construction-closed pair (A′, X) in S, S ↾(α \X) is also an augmented construction sequence over Ab∈X =
A ∪ {bi : b ∈ X}.

Proof. For any i < α, let Bi = {bj : j ∈ X ∨ j < i}. We need to argue that for any i < α with i /∈ X,
tp(bi/ABi) is atomic and moreover its distance predicate is Si-definable over Ci. We will argue that the
distance predicate of tp(bi/ABi) is the same as the distance predicate of tp(bi/Ab<i).

Fix i < α with i /∈ X. Let Y = {j ∈ X : j < i} and Z = {j ∈ X : j > i}. (Note that X = Y ∪ Z.) Let
β be the order type of Z and let (ej)j<β be an enumeration of (bi)i∈Z in order. We have by construction
that tp(ej/Ab<ibie<j) is atomic with an Ab<ie<j-definable distance predicate. Therefore ej |⌣

wo

Ab<ie<j
bi

and by Lemma 1.6 part 5, we have that e<β |⌣
wo

Ab<i
bi. By symmetry, bi |⌣

wo

Ab<i
e<β . Since tp(bi/Ab<i)

is also atomic, we now have by Lemma 1.6 part 6 that tp(bi/Ab<ie<β) is atomic with the same distance
predicate. Note that Ab<ie<β is the same set as A ∪ b∈X ∪ {bj : j < i ∧ j /∈ X}. Therefore we have that
tp(bi/A ∪ b∈X ∪ {bj : j < i ∧ j /∈ X}) is atomic with the same distance predicate as tp(bi/Ab<i), namely φi.

Since we can do this for any i < α with i /∈ X, we have that S ↾(α \ X) is an augmented construction
sequence over Ab∈X . □

We will also eventually need the following lemmas.

Lemma 1.8. Fix an augmented construction sequence S = (bi, φi, Ci,Si)i<α over A. For any construction-
closed pair (B,X), b∈X |⌣

wo

B
A.
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Proof. Let (ej)j<β be an enumeration of b∈X in order. We will prove the statement by induction on j < β.
Assume that we have shown that e<j |⌣

wo

B
A. By construction, tp(ej/Ae<j) is atomic with a Be<j-definable

distance predicate. Therefore ej |⌣
wo

Be<j
A. Fix a tuple f<j+1 and assume that f<j+1 ≡B e<j+1. By the

induction hypothesis, we have that f<j ≡A e<j . Fix an automorphism σ of the monster fixing A pointwise
and taking f<j to e<j . Note that σ also fixes B pointwise. We now have that σ(f<j+1) ≡B e<j+1. Since
σ(f<j) = e<j , we have σ(fj) ≡Be<j

ej . Therefore σ(fj) ≡Ae<j
ej , and so f<j+1 ≡A σ(f<j+1) ≡A e<j+1.

Since we can do this for any such f<j+1, we have that tp(e<j+1/B) ⊢ tp(e<j+1/A) and therefore e<j+1 |⌣
wo

B
A.

Limit stages are immediate, so the statement in the lemma follows. □

Lemma 1.9. Fix an augmented construction sequence S = (bi, φi, Ci,Si)i<α over A. Let (Xj)j<β be an
ascending sequence of subsets of α such that for each j, (A,Xj) is construction-closed in S and S ↾(α\Xj) is
an augmented construction sequence over Ab∈Xj

= A∪{bi : i ∈ Xj}. Then S ↾(α\
⋃

j<β Xj) is an augmented

construction sequence over A ∪ {bi : i ∈
⋃

j<β Xj}.

Proof. If β is not a limit ordinal, then this is trivial, so assume that β is a limit ordinal.
Note that for any i < α, we have Ci ⊆ A ∪ {bk : k ∈ Xj} ∪ {bk : k < i, k ∈ Xj} (since the set on

the right-hand side always contains Ab<i). Therefore all we really need to check is that φi is the distance
predicate of p := tp(bi/A ∪ {bk : k ∈

⋃
j<β Xj} ∪ {bk : k < i, k ∈

⋃
j<β Xj}). Since φi is the distance

predicate of qk := tp(bi/A ∪ {bk : k ∈ Xj} ∪ {bk : k < i, k ∈ Xj}) for each k < β, we have that the set of
realizations of qk in the monster model does not depend on k. Therefore it is also the same as the set of
realizations of p in the monster model, whereby φi is still the distance predicate of p. □

2. Self-sufficiency

Lemma 2.1. Fix an augmented construction sequence S = (bi, φi, Ci,Si) over A. For any construction-
closed pair (A′, X) in S, S ↾X is an augmented construction sequence over A′ (relative to the theory T ↾SX).

Proof. Each φi for i ∈ X is still a distance predicate in the SX -reduct and so still isolates tp(bi/A ∪ {bj :
j < i, j ∈ X}) for each i ∈ X. □

Definition 2.2. Fix an augmented construction sequence S = (bi, φi, Ci,Si)i<α with (bi)i<α an enumeration
of some constructible model M over A. A pair (A′, X) with A′ ⊆ A and X ⊆ α is self-sufficient in S if it is
construction-closed in S and A′b∈X is a dense subset of an SX -elementary substructure of M .

Lemma 2.3. Fix an augmented construction sequence S. For any countable self-sufficient pair (A′, X) in
S, A′b∈X is a dense subset of the unique separable atomic model of (T ↾SX)A′ (i.e., the SX-reduct of T with

constants added for A′).2

Proof. By Lemma 2.1, we have that S ↾X is an augmented construction sequence relative to T ↾SX . There-
fore, by Lemma 1.1, we have that for any model M |= (T ↾SX)A′ , there is an elementary map f : A′b∈X → M
(that fixes A′ pointwise). This extends to an elementary embedding of A′b∈X . Since we can do this for any
model M , we have that A′b∈X is a separable prime model of (T ↾SX)A′ . Therefore by [2, Cor. 12.9] it is the
unique separable atomic model of (T ↾SX)A′ . Since every element of A′ is definable over A′, we have that it
is the unique separable atomic model of (T ↾SX)A′ as well. □

It is routine to show that for any augmented construction sequence S over A (with length α) and any
pair (D,Y ) with D ⊆ A and Y ⊆ α, there is a unique smallest construction-closed pair (B,X) such that
B ⊇ D and X ⊇ Y . Moreover, if (D,Y ) is countable, then this (B,X) will be as well. (This follows from
the fact that a countably branching well-founded tree is countable.) We will call a pair (B,X) like this the
construction-closure of (D,Y ).

Definition 2.4. Given sets of parameters B0 and B1, a densely defined isomorphism between B0 and B1 is
an elementary map f : B0 → B1 with dense image.

2Note that although (T ↾SX)
A′ is not necessarily a theory in a countable language, it is interdefinable with a theory in a

countable language (namely (T ↾SX)A′ ), so general facts regarding uniqueness of separable atomic models still apply to it.
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Given a densely defined isomorphism f between B0 and B1, we clearly have that f has a unique continuous
extension to B0 and that this is an elementary bijection between B0 and B1. We will also write this as f
and write its inverse as f−1.

We will now prove our main technical lemma.

Lemma 2.5. Fix constructible models M0 and M1 of the same complete theory. Fix augmented construction
sequences S0 = (b0i , C

0
i ,S0

i )i<α1 over A1 and S1 = (b1i , C
1
i ,S1

i )i<α1 over A1 enumerating M0 and M1,

respectively. Fix a densely defined isomorphism f : A0 → A1.
For any countable D0 ⊆ A0, Y 0 ⊆ α0, D1 ⊆ A1, and Y 1 ⊆ α1, there are countable self-sufficient pairs

(B0, X0) and (B1, X1) with B0 ⊇ D0, X0 ⊇ Y 0, B1 ⊇ D1, and X1 ⊇ Y 1 such that S0
X0 = S1

X1
(i.e.,⋃

i∈X0 S0
i =

⋃
i∈X1 S1

i ) and f ↾B0 is a densely defined isomorphism between B0 and B1.

Proof. Let D0
0 = D0, Y 0

0 = Y 0, D1
0 = D1, and Y 1

0 = Y 1. Given countable (D0
n, Y

0
n ) and (D1

n, Y
1
n ), build

(D0
n+1Y

0
n+1) and (D1

n+1, Y
1
n+1) as follows:

• Find a separable S0
Y 0
n
∪S1

Y 1
n
-elementary substructure N0

n ⊆ M0 containing D0
n∪b0∈Y 0

n
and a countable

dense subset of A0 ∩ f−1(D1
n).

• Likewise, find a separable S0
Y 0
n
∪ S1

Yn
-elementary substructure N1

n ⊆ M1 containing D1
n ∪ b1∈Y 1

n
and

a countable dense subset of A1 ∩ f(D0
n).

• Find countable (D0
n+1/2, Y

0
n+1/2) such that D0

n+1/2b
0
∈Y 0

n+1/2

is dense in N0
n. Similarly, find countable

(D1
n+1/2, Y

1
n+1/2) such that D1

n+1/2b
1
∈Y 1

n+1/2

is dense in N1
n.

• Let (D0
n+1, Y

0
n+1) be the construction-closure of (D0

n+1/2, Y
0
n+1/2), and let (D1

n+1, Y
1
n+1) be the

construction-closure of (D1
n+1/2, Y

1
n+1/2).

Note that (D0
n+1, Y

0
n+1) and (D1

n+1, Y
1
n+1) are still countable. Finally let B0 =

⋃
n<ω D0

n, X
0 =

⋃
n<ω Y 0

n ,

B1 =
⋃

n<ω D0
n, and X1 =

⋃
n<ω Y 1

n . It is immediate from the definition that (B0, X0) is construction-

closed in S0 and (B1, X1) in S1. Furthermore, we have that Bb0∈X =
⋃

n<ω D0
n+1/2b

0
∈Y 0

n+1/2

is (for every

n < ω) a dense subset of an S0
Yn

∪ S1
Yn

-elementary substructure of M0 (specifically
⋃

n<ω N0
n). Therefore

Bb0∈X0 is a dense subset of an SX0 -elementary substructure of M0jk. Hence (B0, X0) is self-sufficient

in S0. By the same argument (B1, X1) is self-sufficient in S1. Finally, by construction, we have that

S0
X0 =

⋃
n<ω S0

Y 0
n
∪ S1

Y 1
n

= S1
X1 and that f(B0) is dense in B1, whereby (f ↾B0) : B0 → B1 is a densely

defined isomorphism. □

3. Uniqueness of constructible models

Lemma 3.1. Fix augmented construction sequences S0 = (b0i , C
0
i ,S0

i )i<α0 over A0 and S1 = (b1i , C
1
i ,S1

i )i<α1

over A1 with A0 and A1 countable and such that S0 and S1 enumerate some models M0 and M1, respec-
tively. Fix self-sufficient pairs (A0, X0) in S0 and (A1, X1) in S1. If S := S0

X0 = S1
X1 , then any dense

S-isomorphism g : A0b0∈X0 → A1b1∈X1 is a dense L-isomorphism.

Proof. By self-sufficiency, we know that the L-types of every finite tuple of elements of A0b0∈X0 and A1b1∈X1

are determined by their S-types. Therefore g is an L-elementary map and so is a dense L-isomorphism. □

Given our notation of SX for the language
⋃

i∈X Si, we will write S(B) for the language S with constants
added for the elements of a set of parameters B.

Lemma 3.2. Fix augmented construction sequences S0 = (b0i , C
0
i ,S0

i )i<α0 over A0 and S1 = (b1i , C
1
i ,S1

i )i<α1

over A1 with A0 and A1 countable and such that S0 and S1 enumerate some models M0 and M1, respectively.
Fix countable sets X0 ⊆ α0 and X1 ⊆ α1 such that (A0, X0) and (A1, X1) are self-sufficient in S0 and S1. If

S0
X0 = S1

X1 , then for any densely defined isomorphism f : A0 → A1, there is a densely defined isomorphism

g : A0b0∈X0 → A1b1∈X1 that extends f .

Proof. Let S = S0
X0 = S1

X1 . By applying an automorphism of the monster, we may assume that A0 = A1

and that f : A0 → A1 is the identity map. By Lemma 2.3, the S(A0)-reduct of A0b0∈X0 is the unique
5



separable atomic model of (T ↾S)A0 . Likewise, the S(A1)-reduct of A1b1∈X1 is the unique separable atomic

model of (T ↾S)A1 . Since A0 = A1, S(A0) and S(A1) are the same language and (T ↾S)A0 and (T ↾S)A1

are the same theory. Therefore, we have that there is an S-isomorphism between A0b0∈X0 and A1b1∈X1 that

fixes A0 = A1 pointwise. By Lemma 3.1, this is a dense L-isomorphism. □

Lemma 3.3. Fix sets B0, C0 ⊇ A0 and B1, C1 ⊇ A1 and densely defined isomorphisms f : B0 → B1 and
g : C0 → C1 such that f ↾A0 = g ↾A0. If B0 |⌣

wo

A0 C
0, then f ∪ g is a densely defined isomorphism between

B0 ∪ C0 and B1 ∪ C1.

Proof. We clearly still have that f(B0) |⌣
wo

f(A0)
g(C0). By Lemma 1.6 part 1, we have that f(B0) |⌣

wo

f(A0)
g(C0).

Since f(B0) = B1, f(A0) = A1, and g(C0) = C1, we have B1 |⌣
wo

A1 C
1 by Lemma 1.6 part 1 again. □

Theorem 3.4. Any two constructible models of a complete continuous first-order theory are isomorphic.

Proof. Fix constructible models M0 and M1 of a complete theory T . Fix augmented construction sequences
S0 = (b0i , φ

0
i , C

0
i ,S0

i )i<α0 and S1 = (b1i , φ
1
i , C

1
i ,S1

i )i<α1 over ∅ enumerating M0 and M1 respectively.
We will build by transfinite induction sets Z0

j ⊆ α0 and Z1
j ⊆ α1 and densely defined isomorphisms

fj : b
0
∈Z0

j
→ b1∈Z1

j
satisfying that

• for j < k, Z0
j ⊆ Z0

k , Z
1
j ⊆ Z1

k , and fj is extended by fk,

• if j < α0, then b0j ∈ Z0
j+1 and if j < α1, then b1j ∈ Z1

j+1, and

⋆ for each j, S0 ↾(α0 \ Z0
j ) is an augmented construction sequence over b0∈Z0

j
and S1 ↾(α1 \ Z1

j ) is an

augmented construction sequence over b1∈Z1
j
.

Assume that we have built this up to some limit ordinal j. If we let Z0
j =

⋃
k<j Z

0
k and likewise for Z1

j and

fj , then it is easy to check that fj : b
0
∈Z0

j
→ b1∈Z1

j
is a densely defined isomorphism. Furthermore, ⋆ holds by

Lemma 1.9. This means that we only really need to worry about successor stages.

Assume that we have Z0
j , Z

1
j , and a densely defined isomorphism fj : b0∈Z0

j
→ b1∈Z1

j
such that ⋆ holds.

Apply Lemma 2.5 to the construction sequences S0 ↾(α0\Z0
j ) and S1 ↾(α1\Z1

j ) to get countable self-sufficient

pairs (A0
j , X

0
j ) and (A1

j , X
1
j ) such that

• A0
j ⊆ b0∈Z0

j
and A1

j ⊆ b1∈Z1
j
,

• X0
j ⊆ α0 \ Z0

j and X1
j ⊆ α1 \ Z1

j ,

• if j ∈ α0 \ Z0
j , then j ∈ X0

j and if j ∈ α1 \ Z1
j , then j ∈ X1

j ,

• S0
X0

j
= S1

X1
j
, and

• fj ↾A0
j is a densely defined isomorphism between A0

j and A1
j .

By Lemma 3.2, we can find a densely defined isomorphism gj : A
0
jb

0
∈Z0

j
→ A1

jb
1
∈Z1

j
extending fj ↾A0

j . We now

need to argue that fj∪gj is a densely defined isomorphism between {b0k : k ∈ Z0
j ∪X0

j } and {b1k : k ∈ Z1
j ∪X1

j }.
Since A0

j ⊆ b0∈Z0
j
, it is immediate that (b0∈Z0

j
, X0

j ) is a construction-closed pair. By Lemma 1.4, we have

that (S ↾α0 \ Z0
j ) ↾X

0
j = S ↾X0

j is an augmented construction sequence over b0∈Z0
j
. Moreover, (A0

j , X
0
j ) is

construction-closed in S ↾X0
j over b0∈Z0

j
. By Lemmas 1.8 and 1.6, b0∈X0

j
|⌣
wo

A0
j

b0∈Z0
j
. Therefore by Lemma 3.3,

we have that fj ∪ gj is a densely defined isomorphism between b0∈X0
j
∪ b0∈Z0

j
and b1∈X1

j
∪ b1∈Z1

j
. Finally note

that S0 ↾(α0 \Z0
j+1) is an augmented construction sequence over b0∈Z0

j+1
by Proposition 1.7, and likewise for

S1 ↾(α1 \ Z1
j+1) over b

1
∈Z1

j+1
.

Since can run this construction indefinitely, we will have that fmax{α0,α1} is an isomorphism between M0

and M1. □

Note that an immediate corollary of Theorem 3.4 is that if M0 and M1 are both constructible models of
the same complete theory over a set of parameters A, then there is an isomorphism between M0 and M1

fixing A pointwise.
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