
Metric spaces are universal for bi-interpretation

with metric structures

James Hanson

September 8, 2019

Abstract

In the context of metric structures introduced by Ben Yaacov, Beren-
stein, Henson, and Usvyatsov[5], we exhibit an explicit encoding of metric
structures in countable signatures as pure metric spaces in the empty sig-
nature, showing that such structures are universal for bi-interpretation
among metric structures with positive diameter. This is analogous to
the classical encoding of arbitrary discrete structures in �nite signatures
as graphs, but is stronger in certain ways and weaker in others. There
are also certain �ne grained topological concerns with no analog in the
discrete setting.

1 Introduction

It is a well known fact[6] that any discrete structure with �nite signature can
be encoded as a graph in a particularly strong way:

Fact 1.1. For any �nite signature L there is a sentence χ in a language with
a single binary predicate such that every model of χ is a graph and the class of
models of χ is bi-interpretable with the class of L-structures with more than one
element. Furthermore this bi-interpretation preserves embeddings and is com-
putable in the sense that presentations of models of χ are uniformly computable
from presentations of the corresponding L-structure and vice versa.

This immediately implies that the set of tautologies involving a single binary
predicate is undecidable, even though so called `monadic �rst-order logic,' in-
volving only unary predicates, is decidable. This is in contrast to the situation
in continuous �rst-order logic, introduced in [5]. There is an easy encoding of a
graph (V,E) as a metric space (V, d), where

d(x, y) =

 0 x = y
1
2 xEy
1 otherwise

.

So the set of continuous tautologies in the empty signature is undecidable for
any reasonable notion of computable continuous formulas. Moreover, discrete
structures can be encoded as metric spaces, in light of Fact 1.1.
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The proof of Fact 1.1 uses a `tag construction,' in which each tuple x0, x1, ..., xk−1
related by some relation P is connected by a tag which is engineered to distin-
guish each xi and to be distinguishable from tags corresponding to relations ot-
her than P . This particular construction does not generalize in any satisfactory
way to metric structures, but the main result of this paper is a generalization
of Fact 1.1:

Theorem 1.2. For any countable metric signature L and r > 0, there is a the-
ory T in the empty signature such that the class of models of T is bi-interpretable
with the class of L-structures with diameter ≥ r. This bi-interpretation preser-
ves embeddings and d-�niteness of types. If the original structure is not strongly
in�nite dimensional, then the interpreted structure will also not be strongly in�-
nite dimensional. Furthermore, the bi-interpretation is computable in the sense
that presentations of models of T are uniformly computable from presentations
of the corresponding L-structure and vice versa.

There are some improvements in Theorem 1.2 over Fact 1.1, namely that the
encoding works in the empty signature�which is largely cosmetic�and that
we can encode countable signatures rather than just �nite ones. `d-�niteness
of types' is a technical niceness condition introduced in [1] that will be discus-
sed below. Strong in�nite dimensionality is relevant from the point of view of
computable structure theory, since the continuous degree of a point in a �nite
dimensional or weakly in�nite dimensional metric space is always total[7]. These
two concepts play no essential role in the construction.

The restriction that the metric structures have diameter uniformly bounded
below is the necessary analog of the `more than one element' restriction. A sim-
ple compactness argument shows that we could never have bi-interpretability be-
tween a single elementary class of metric spaces and the class of all L-structures
of positive diameter. In both the discrete case and the metric case we could
avoid this non-uniformity by appending a new sort to every structure that al-
ways contains precisely two elements distance 1 apart. Also it should be noted
that this is a non-issue from a computable structure theory point of view.

Finally there's the issue of �nite axiomatizability, which the generalization
loses, although, as will be discussed at the end of the paper in Section 6.1, there
is no clear analog of �nite axiomatizability in continuous logic.

2 Preliminaries

In the interest of notational brevity, we will describe one step of the bi-interpretation
informally before de�ning the concept of a metric signature rigorously:

Fact 2.1. Every many-sorted metric signature can be recast as a purely relati-
onal metric signature with [0, 1]-valued predicates and metrics.

So from now on all predicate symbols will be [0, 1]-valued and in particular
all sorts will have diameter ≤ 1.
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There are some trivial subtleties if we allow ourselves predicates with zero-
length ranges or other such bookkeeping edge cases, but I trust that anyone
dedicated enough to include those in their formalism will be more than capa-
ble of resolving those issues on their own. Normally the task of setting out
the bookkeeping for many-sorted structures is similarly relegated, but for our
purposes here it will be prudent to consider it immediately.

For computable metric signatures, obviously we should require that the pre-
dicate ranges and maximum sort diameters be uniformly computable before
recasting in the form above (although really all we need are uniformly computa-
ble upper and lower bounds), in order to ensure that we can uniformly compute
presentations of recast structures from presentations of the original structures.

De�nition 2.2. (i) A metric signature L, is a tuple (S,P, a,∆), where

• S is a set of sort symbols;

• P is a set of predicate symbols;

• a : P → S<ω is the arity function that assigns to each predicate symbol
its �nite string of input sorts (by an abuse of notation we will use a for
formulas as well as atomic predicates); and

• for each predicate symbol P , ∆P : [0, 1]→ [0, 1] is the syntactic modulus
of uniform continuity of P .

(ii) A computable metric signature is a metric signature such that S and P are
computable subsets of ω, a is a computable function which is total on P, and
P 7→ ∆P is a uniformly computable family of total computable functions.

Although in full generality moduli of uniform continuity can be speci�ed
as functions of each variable individually, on the level of a metric signature
nothing is gained by such a generalization. Likewise there is no particular
reason for moduli of uniform continuity to be continuous anywhere other than
0, but again nothing is gained and continuity is a more natural convention in
the context of computable metric signatures.

The phrase `syntactic modulus of uniform continuity' refers to the fact that
in a given L-structure the corresponding predicate may obey a stricter modulus
of uniform continuity.

The de�nitions of restricted L-formulas, L-structures, and other such things
is given in [5]. We should be clear about what a computable metric structure
is.

De�nition 2.3. Given a computable metric signature L, a computable L-
structure is an L-structure whose universes are a uniformly computable family
of computable metric spaces (in the sense of [8]) and whose predicate interpre-
tations are all uniformly computable functions.

Finally we will need a syntactically uniform notion of de�nable predicate,
similar to the one given in [2].
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De�nition 2.4. (i) For a metric signature L, a �nitary L-formula is an ex-
pression of the form

∑
n<ω 2−(n+1)ϕn, with ϕn a sequence of [0, 1]-valued re-

stricted L-formulas such that the entire sequence contains �nitely many free
variables. Such a formula has a syntactic modulus of uniform continuity of∑
n<ω 2−(n+1)∆ϕn

.
(ii) An ω-in�nitary L-formula is an expression of the same form without the

restriction on involving �nitely many free variables. (Such an expression has a
uniformly computable syntactic modulus of uniform continuity in terms of the
appropriate metric on ω-tuples, but it is somewhat more complicated to state.)

(iii) An L-formula is either a �nitary or an ω-in�nitary L-formula.
(iv) A computable L-formula is an L-formula such that the sequence of for-

mulas ϕn is computable (the ϕn are required to be restricted formulas and can
therefore be encoded by natural numbers).

Normally, de�nable predicates are de�ned relative to a single metric struc-
ture or an elementary class of metric structures in terms of uniformly convergent
limits of restricted formulas, but the notion of formula given here is purely syn-
tactic and can be interpreted in any L-structure.

With some straightforward work, one can check that any de�nable predicate
in the typical sense can be written in this form and that the resulting family
of formulas is closed under this `in�nitary connective,' as well as all ordinary
connectives, up to logical equivalence. In particular, even though continuous
logic has an in�nitary conjunction, it does not have a tall hierarchy of in�nitary
formulas the same way, for instance, Lω1ω does.

3 Expansions

We need to specify a few notions of expansions and interde�nability in continu-
ous logic.

De�nition 3.1. (i) For a given metric signature L and a �nitary L-formula
ϕ(x), a de�nitional expansion of L by ϕ is a metric signature L∗ containing
the same sorts as L and a single new predicate symbol P with a(ϕ) = a(P )
and ∆ϕ = ∆P . For A an L-structure, the corresponding L∗-structure A∗ is
given by interpreting P as ϕ. We also refer to iterated de�nitional expansions
as de�nitional expansions.

(ii) An L-structure, A, and a K-structure, B, are interde�nable if there are
de�nitional expansions A∗ andB∗ which make them isomorphic up to relabeling
of sorts and predicate symbols (we allow metrics to be relabeled). A class C0

of L-structures and a class C1 of K-structures are interde�nable if there is a
bijection between their isomorphism classes for which each pair is uniformly
interde�nable via some �xed de�nitional expansions of signatures L → L∗ and
K → K∗ and relabeling. (Note that we aren't requiring that the syntactic
moduli of continuity match.)

(iii) Given a metric structure A, an imaginary expansion of A is one of the
following operations:
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• Appending a product sort P =
∏
i<nOi for some 0 < n ≤ ω and sorts

Oi ∈ S. By convention the metric on a �nitary product sort will always be
the maximum of the component metrics and the metric on an ω-product
sort will always be supi<ω 2−idOi

. We also append projection predicates
πi on P ×Oi for each i < n, where πi(〈x0, x1, . . . , xn−1〉 , y) = dOi

(xi, y).

• Appending a ∅-de�nable set D in sort O as a new sort OD as well as an
inclusion predicate ι on OD ×O, where ι(x, y) = dO(z, y) for x ∈ OD and
y, z ∈ O with z the element of D corresponding to x. The metric dOD

is
the restriction of dO to D.

• For ρ, a ∅-de�nable pseudo-metric on sort O, appending the quotient sort
O/ρ along with a quotient predicate q on O × O/ρ, where q(x, [y]ρ) =
ρ(x, y) for x, y ∈ O, where [y]ρ is the ρ-equivalence class of y. This is
well-de�ned because ρ is a pseudo-metric.

Recall that we have restricted ourselves to relational languages at this point,
which is why the projection, inclusion, and quotient maps are encoded as pre-
dicates.

We also refer to iterated imaginary expansions as imaginary expansions. 1

The added generality of allowing ω-tuples and passing to de�nable sets is
natural and somewhat necessary in continuous logic[5, Section 11]. ω-tuples are
necessary for canonical parameters since a formula can involve countably many
parameters, but note that for any formula ϕ on an ω-product sort, if A |= ϕ(a),
then for any ε > 0 the fact that A |= ϕ(a) < ε only depends on �nitely many
terms in a, uniformly as a function of ε, because ϕ needs to be uniformly con-
tinuous with regards to the ω-product metric. Because of this, ω-product sorts
are just as safe as �nitary product sorts in terms of compatibility with ultrapro-
ducts and preserving the category of models. Explicitly passing to de�nable sets
is necessary in situations such as the following: In a connected metric structure
M with a non-trivial de�nable discrete subset D, there is no uniformly conti-
nuous pseudo-metric ρ on M that will make M/ρ isometric to D (or D plus a
single new point or anything else you would do in the discrete setting), since
the quotient map M → M/ρ is continuous and continuous functions preserve
connectedness.

Lemma 3.2. (i) For any metric signature L (not necessarily countable), there
is a metric signature K which is interde�nable with an imaginary expansion of
L such that K has a uniform bound of 2 on the arities of its predicate symbols.
For computable signatures, the signature K is uniformly computable from L
and presentations of L-structures can be uniformly converted into corresponding
presentations of K-structure and vice versa.

1Even though imaginary expansions are de�ned for structures and not signatures, of the
three forms of imaginary expansion, only expansion by a de�nable set is not uniform across
all structures of a given signature, as every de�nable pseudo-metric can be written in the form
ρ(x, y) = supz |ϕ(x, z) − ϕ(y, z)|, as ρ(x, y) = supz |ρ(x, z) − ρ(y, z)|, and such an expression
is a de�nable pseudo-metric in any L-structure.
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(ii) There is a K-theory TL, uniformly computable from L, such that the
models of TL are precisely the interpretations of L-structures.

Proof. (i) For each predicate symbol p, we can de�ne a unary formula on the sort
ΠO∈a(p)O in the obvious way. These, together with projection maps between
product sorts and the original L-sorts, are clearly enough to de�ne any predicate
originally de�nable in an L-structure in a completely uniform way. Since the
projection maps are encoded as 2-ary predicates, we have the required arity
bound. This procedure is also clearly uniformly computable, both for signatures
and presentations of structures.

(ii) All that TL needs to say is that the predicates corresponding to projection
maps are actually projection maps and that the product sorts are products of
the sorts they project onto.

De�nition 3.3. If L is a metric signature with designated home sort H and
0 < r ≤ 1 is a real number, CL,r is the class of L-structures A satisfying
diam(HA) ≥ r.

The following lemma is the source of all non-uniformity relative to r in the
entire construction and is analogous to the fact that a discrete structure with
only one element cannot interpret any structure with more than one element. It
could be avoided by appending a new compact sort isometric to [0, 1] with the
standard metric, or literally any other �xed non-trivial compact metric space,
and letting that be the designated home sort H.

Lemma 3.4. Let X be a compact metric space. There is a uniformly de�nable
imaginary Y such that for any A ∈ CL,r, Y A ∼= X, with each point of Y A and
every continuous function (Y A)n → [0, 1] uniformly ∅-de�nable.

Proof. Let x0, x1, y0, y1 be variables in H and consider the L-formula

ρ(x0, x1, y0, y1) =
1

r
|d(x0, x1)− d(y0, y1)| ∧ 1.

This is a pseudo-metric on H2. H2/ρ contains more than one point for any
A ∈ Cr, because of the diameter requirement, in particular it has a de�nable
subset consisting of the ρ-equivalence classes of pairs satisfying d(x0, x1) = 0
and pairs satisfying d(x0, x1) ≥ r, with each of those points being ∅-de�nable
by the formulas 1

rd(x0, x1) and 1 ·− 1
rd(x0, x1), respectively. Let D denote this

de�nable set. Clearly D is always isometric to the discrete space with two
points so in particular C = Dω is an isometric copy of Cantor space with the
standard metric with every point uniformly ∅-de�nable. It is well known that
Cantor space continuously surjects onto any compact metric space (X, dX), so
by pulling back dX to C2 we get a continuous pseudo-metric on C whose quotient
is isometric to X. Therefore, since the type space SC2(T ) is isomorphic to C2

(both metrically and topologically), the pullback metric is a continuous function
on SC2(T ) and is thus a de�nable pseudo-metric on C. Since each point of C is
uniformly de�nable, this gives the required uniformly de�nable imaginary Y .
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Finally for an arbitrary continuous function f : Xn → [0, 1], the pullback on
the type space SCn(T ) is continuous and therefore de�nable. By construction
it is compatible with the quotient map C → Y and is therefore a de�nable
predicate on the imaginary Y A.

There are some potential subtleties involving uniform computability of for-
mulas de�nining computable compact imaginaries and computable predicates
on them. In the current context we only need Lemma 3.4 for a small handful of
very speci�c tame compact metric spaces, so we'll deal with computability on a
case-by-case basis.

Lemma 3.5. For any CL,r, with r > 0, if {OA
n }n<k is a �nite collection of sorts

of diameter ≤ 1, then the disjoint union U =
⊔
n<k On with metric d(x, y) = 1

for x ∈ On and y ∈ Om with n 6= m and d(x, y) = dOn
(x, y) for x, y ∈ On is

a uniformly de�nable imaginary in CL,r. Furthermore the formulas de�ning U
are uniformly computable in L, r, and the list of sorts.

Proof. By Lemma 3.4, the discrete space ∆k = {0, ..., k − 1}, with the metric
δ(x, y) = 1 if x 6= y, is uniformly an imaginary of CL,r (although in particular
we don't have to go through Cantor space and we can realize ∆k as a quotient
of some ∆2` = (∆2)` in a clearly uniformly computable way). Furthermore we
can arrange that each element of ∆k is de�nable.

De�ne a formula ρ(x, y) on ∆k ×
∏
n<k On by

ρ(x, y) =

(
δ(x0, y0) +

∧
n<k

(d(xn+1, yn+1) + δ(x0, n))

)
∧ 1.

Checking de�nitions gives that ∆k ×
∏
n<k On/ρ is the required imaginary.

This formula is also clearly uniformly computable.

4 Countable disjoint unions of sorts

A common trick in discrete logic is merging a �nite collection of sorts by taking
the disjoint union and adding unary predicates selecting out each sort. This
can't be extended to in�nitely many predicates without changing the category
of models: by compactness there will be models with elements not in any given
sort. The added �exibility of continuous logic allows us to do this with countably
many sorts at once without changing the category of models, speci�cally we can
arrange it so that any sequence of types that ought to limit to an `unsorted'
type is shunted into a single unique over�ow point. This is very similar to the
`enboundment' method used in [3] to treat unbounded metric structures.

It should be noted that if L has �nitely many sorts and (possibly in�nitely
many) predicates with uniformly bounded arity, this section can be skipped and
the construction in Theorem 6.2 will work directly.
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De�nition 4.1. Let {On}n<ω be a countable sequence of L-sorts. For any L-
structure A, the countable metric disjoint union of {On}n<ω is a metric structure
with the following set as its universe:

UA = {∗} ∪
⊔
n<ω

OA
n

where ∗ is a single new point. The metric disjoint union is written
⊔∗
n<ω On.

UA has the following metric: let x, y ∈ OA
n , z ∈ OA

m, with n 6= m, then

dAU (x, y) = 2−ndAOn
(x, y),

dAU (x, z) = |2−n − 2−m|,

dAU (x, ∗) = 2−n,

where the other values are determined by symmetry. We will prove in Pro-
position 4.2 that this de�nes a complete metric space.

A predicate on some OA
n1
× · · · × OA

nk
is extended to a predicate on UA by

setting its value to 1 (i.e. `false') when the input is not part of its domain.
Finally we add a distance predicate for the set {∗} (recall that we have

restricted ourselves to relational languages, so we can't use a constant).

Proposition 4.2. (i) The countable metric disjoint union, U =
⊔∗
n<ω On, of

a sequence {On}n<ω of L-sorts is well-de�ned, i.e. the metric given in the
de�nition is actually a metric and de�nes a complete metric space.

(ii) The predicates interpreted on it are uniformly continuous. In particular
if they are Lipschitz in the original signature they will still be Lipschitz (although
possibly with a di�erent Lipschitz constant).

(iii) The countable metric disjoint union is isomorphic to a uniformly de-
�nable imaginary for all A ∈ CL,r. The relevant formulas and the map of
presentations A 7→ UA are uniformly computable from the sequence {On}n<ω,
the signature L, and the real number r, so in particular if all of those are compu-
table, then the relevant formulas and the map of presentations are computable.

(iv) Each On as a subset of U is a de�nable subset of U and (considering
U as an imaginary sort) there is a de�nable bijection between On as a sort and
On as a de�nable subset of U . The relevant formulas are uniformly de�nable in
L and computable.

(v) For a �xed sequence S = {On}n<ω of L-sorts with O0 = H, the designa-
ted home sort, there is a signature LS and a theory TS , uniformly computable
from L and S , and a LS -sentence ΞS , such that the models of TS ∪{r ·−ΞS }
are precisely the same as reducts to the sort

⊔∗
n<ω On of structures in CL,r

Proof. (i) The expression given for d clearly obeys all metric space axioms be-
sides the triangle inequality. The only unobvious case is the one consisting of
two points in some On and a third point in some Om with n 6= m, and letting
Oω = {∗} with the understanding that �2−ω� = 0. Let x, y ∈ On and z ∈ Om
with n 6= m. By symmetry there are only 2 cases to check:
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• d(x, y) ≤ 2−n and d(x, z) = d(y, z) = |2−n − 2−m| ≥ 2−(n∧m+1), so
d(x, z) + d(y, z) ≥ 2−(n∧m) ≥ 2−n ≥ d(x, y) and in this case the triangle
inequality is obeyed.

• d(x, z) = |2−n−2−m|, so d(x, z) ≤ d(x, y)+|2−n−2−m| = d(x, y)+d(y, z).

So the triangle inequality is obeyed in all cases.
To see that the metric space is complete, note that any Cauchy sequence is

either eventually contained in some On or is limiting to ∗.
(ii) If a predicate P on sort On1

×· · ·×Onk
has modulus of uniform continuity

∆P (x), then the corresponding predicate on U is uniformly continuous with
modulus of uniform continuity

∆∗P (x) =
(
∆P ((2Nx) ∧ 1) ∨ (2N+1x)

)
∧ 1,

where N = n0 ∨ · · · ∨ nk−1. Note that if P has Lipschitz constant L, then on U
it will have Lipschitz constant 2N+1L, and in particular it will still be Lipschitz.

(iii) By Lemma 3.4, the class CL,r has a uniformly de�nable imaginary iso-
metric to the metric space (X, d) where X = {0} ∪ {2−n : n < ω} and d is the
standard metric on R. Let W = X ×Πn<ωOn be the in�nitary product sort.

(iv) For any x ∈ U , d(x,On) = |d(x, ∗)− 2−n|.
Let Q : X → [0, 1] be the natural inclusion map, which is a de�nable predi-

cate on X uniformly for all members of CL,r. For each n, let

Rn(x) = 1 ·− 2n+1|Q(x)− 2−n|,

i.e. Rn is a predicate on X which takes on the value 1 at 2−n and 0 everywhere
else. Now de�ne a pseudo-metric on W by

ρ(x, y) = |Q(x0)−Q(y0)|+
∑
n<ω

2−nRn(x0)Rn(y0)dOn
(xn+1, yn+1).

Although in principle this is [0, 2]-valued, by construction it will only take
on values in [0, 1]. Taking the quotient W/ρ will identify any two elements
a, b ∈ W if and only if a0 = b0 and either a0 = 0 or a0 = 2−n and an = bn. So
by making the identi�cation of elements of the form (2−n, . . . , an, . . . ) with an
and elements of the form (0, . . . ) with ∗, we get a bijection between W/ρ and
U , and by checking de�nitions we see that ρ induces the correct metric on U .

(v) The signature LS has a single sort the same predicate symbols as
L with the same total arity along with a single new unary predicate sym-
bol Q. For each predicate symbol P , the syntactic modulus of continuity is(
∆P ((2Nx) ∧ 1) ∨ (2N+1x)

)
∧1, where ∆P is the syntactic modulus of continuity

of P in L, and ∆Q(x) = x.
Recall that for a given formula ϕ there are axioms determined by ϕ that

hold exactly when ϕ is the distance predicate of a de�nable set[5, Theorem
9.12]. Since these axioms are �xed restricted sentences depending on ϕ, they
are uniformly computable from ϕ. TS has axioms saying that Q is a distance
predicate and that the set de�ned by Q is non-empty and has diameter 0. Let
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∗ be a constant referring to the unique point de�ned by Q in order to make the
following axioms easier to write down.

Let f : [0, 1]→ [0, 1] be a total computable continuous function whose zeroset
is precisely X = {0} ∪ {2−n : n < ω}. TS has the axioms

sup
x
f(d(x, ∗)),

inf
x
|d(x, ∗)− r|, for each r ∈ X.

For each r ∈ X, TS has axioms stating that |d(x, ∗) − r| is a distance
predicate for a de�nable set, by abuse of notation label those de�nable sets On.
The sentence ΞS is given by

ΞS = sup
x,y∈O0

d(x, y),

i.e. the diameter of O0. Finally there are axioms for each predicate symbol P
and incorrect sequence of input sorts saying that P takes on the value 1 on those
inputs (this is expressible since the sorts are de�nable sets) and axioms stating
that P obeys the modulus of continuity ∆P relative to the rescaled metrics on
the On.

The following proposition is clear by construction and in particular part (iii)
of Proposition 4.2 above.

Proposition 4.3. If L is a metric signature with countably many sorts and
we let U =

⊔∗
O∈S O be the imaginary disjoint union of all L-sorts, then for all

A ∈ CL,r, A and UA have uniformly de�nable imaginary expansions which are
uniformly interde�nable.

Aside from the issue of topological dimension and continuous degrees of
points in the structure discussed in the introduction, one of the mild techni-
cal advantages of a countable metric disjoint union over an ω-product is that
parameters in non-trivial ω-products tend to be poorly behaved in that they
act like countable collections of parameters rather than �nite collections of pa-
rameters. This general phenomenon of single parameters acting like countable
collections of parameters can be blamed for many of the pathologies in con-
tinuous logic (e.g. pairs ab such that tp(ab) is principal but tp(a/b) is not,
theories with exactly two separable models, small theories with only `approxi-
mately ω-saturated' separable models, and ω-categorical theories which fail to
be ω-categorical after naming an element). In [1], Usvyatsov and Ben Yaacov
introduced the notion of a d-�nite type, which intuitively speaking characterizes
when a �nitary type actually behaves like a discrete �nitary type, rather than a
discrete ω-type. Uniform d-�niteness is a technical strengthening of d-�niteness
that was needed in an analog of Lachlan's theorem on the number of countable
models of a superstable theory in [1].
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Proposition 4.4. (i) Let a ∈
⊔∗
n<ω On be an `-tuple of elements not equal to

∗. For any set B of parameters, tp(a/B) is (uniformly) d-�nite as a type in the
correct product sort if and only if it is (uniformly) d-�nite as a type in the sort(⊔∗

n<ω On
)`
. (Note that since ∗ ∈ dcl(∅), its type is always uniformly d-�nite

and adding it to a tuple preseves d-�niteness.)
(ii) For any (locally) compact set B ⊂ OA

k , the corresponding set in
⊔∗
n<ω O

A
n

is (locally) compact. (Although note that the countable metric disjoint union will
typically fail to be locally compact at ∗.)

(iii) For any topologically �nite dimensional (resp. weakly in�nite dimensio-
nal) set B ⊂ OA

k , the corresponding set in
⊔∗
n<ω O

A
n is �nite dimensional (resp.

weakly in�nite dimensional). If each OA
k is �nite dimensional, then

⊔∗
n<ω O

A
n

will be either �nite dimensional or weakly in�nite dimensional and locally �-
nite dimensional away from ∗. If each OA

k is weakly in�nite dimensional, then⊔∗
n<ω O

A
n is as well.

Proof. These all follow from the fact that the natural inclusion maps Ok →⊔∗
n<ω On are open, isometric-up-to-scaling, and bijections between de�nable

sets.

In particular if T is `hereditarily ω-categorical' (i.e. ω-categorical over every
�nite set of parameters) or has an exactly ω-saturated separable model, then
Th
(⊔∗

n<ω On
)
will as well[1].

5 Making everything Lipschitz

Ultimately we will need all of our predicate symbols to be Lipschitz since they
will be encoded directly into a metric and metrics are always Lipschitz. There
are a couple of ways to accomplish this. If the reader does not care about
computability, this section can be skipped using the following fact. Also it
should be noted that Fact 5.1 works for uncountable metric signatures, but the
result that we will use, Proposition 5.6, does not in general.

Fact 5.1. Let (X, d) be a metric space and f : X → [0, 1] be a uniformly
continuous function. For each 0 < n < ω, let

fn(x) = inf
y

(
1

n
f(y) + d(x, y)

)
∧ 1.

Then fn(x) is a sequence of 1-Lipschitz functions such that nfn → f uni-
formly as n→∞.

In general that procedure would cost a jump to compute on a given structure,
i.e. if some degree a computes a structure (M,P ) with predicate P , then a′ will
compute (M,P0, P1, . . . ) with Pn given by the formula in Fact 5.1, so to ensure
that the construction is computable, we will have to use something else. The
idea is that if α is a concave non-decreasing function such that α(0) = 0, then
for any metric d, α(d) is also a metric. So if one of our predicates P has a
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concave non-decreasing modulus of uniform continuity, then we can compose
it with the metric to get a uniformly equivalent metric relative to which P is
1-Lipschitz.

The following is a fairly elementary real analytic fact, but we will include a
proof for the sake of demonstrating that the procedure is computable. Note that
we could avoid this lemma entirely if we require that moduli of continuity be
non-decreasing and sub-additive, which is often required for moduli of uniform
continuity and can always be arranged as per this lemma.

Lemma 5.2. Let δ : [0, 1] → [0, 1] be a continuous function satisfying δ(0) =
0. There is a continuous, concave, non-decreasing function α : [0, 1] → [0, 1]
satisfying α(0) = 0 and α ≥ δ. Furthermore, α is uniformly computable from δ.

Proof. α will be the `non-decreasing convex hull of δ,' de�ned by the following
formula:

α(x) = inf{mx+ b : 0 ≤ m, b, (∀y ∈ [0, 1])my + b ≥ δ(y)}.

For each n < ω, de�ne

αn(x) = inf{mx+ b : 0 ≤ m, b, (∀k ∈ {0, 1, . . . , 2n})m(2−nk) + b ≥ δ(2−nk)}.

When computing αn, the largest m necessary is at most

mn = 2n sup
0≤k<2n

|δ(2−n(k + 1))− δ(2−nk)|,

and the largest b is always at most 1, so the computation of αn amounts to
minimizing a δ-computable linear function on a δ-computable bounded polytope,
so the αn are uniformly computable in δ[8, Chapter 5]. Furthermore note that
since each αn is the in�mum of a family of Lipschitz functions with uniformly
bounded Lipschitz coe�cients, αn is Lipschitz and in particular continuous.

Now all we need to show is that αn converges uniformly to α with a computa-
ble modulus of uniform convergence. For computability considerations, we will
need the fact that the modulus of uniform continuity of a continuous function
f on [0, 1] is uniformly computable from f [8, Chapter 6]. Let ∆δ be the mo-
dulus of uniform continuity of δ. By replacing ∆δ with sup0≤y≤x ∆δ(y) (with is
uniformly computable from ∆δ, since [0, x] is e�ectively compact uniformly in
x), we may assume that ∆δ is non-decreasing.

Now note that for each n < ω, we have the following inequality:

αn ≤ α ≤ αn + 2∆δ(2
−n). (?)

To see that this inequality is true, note that for each interval I = [2−nk, 2−n(k + 1)],
we must have

δ(x) ≤
[
δ(2−nk) ∨ δ(2−n(k + 1))

]
+∆(2−n) ≤

[
δ(2−nk) ∧ δ(2−n(k + 1))

]
+2∆(2−n),

12



for all x ∈ I. Therefore, if m, b ≥ 0 satisfy the requirements in the in�mum
de�ning αn, then for all x ∈ I,

mx+ b ≥ δ(2−nk) ∨ δ(2−n(k + 1)),

and thus (?) follows, so we get that αn → α uniformly as n → ∞, so α is
continuous. Furthermore, we clearly have a uniformly computable modulus of
uniform convergence, so α is uniformly computable.

Finally note that α is concave and non-decreasing by construction (these are
preserved by in�ma) and α(0) = 0 since for every ε > 0, there is an m > 0 such
that mx+ ε ≥ δ(x) for all x ∈ [0, 1], by continuity of δ.

So if we have a single modulus of continuity that works for all relation
symbols we can �nd an inter-de�nable structure with a Lipschitz signature.
Fortunately we can always arrange this if our signature is countable.

De�nition 5.3 (Uniform uniform continuity). (i) A family of functions f ∈
F on a metric space X is uniformly uniformly continuous if there is a single
modulus of uniform continuity valid for all f ∈ F .

(ii) A metric signature L is uniformly uniformly continuous if ∆P = ∆Q for
all predicate symbols P and Q.

Recall that two metric spaces (X0, d0), (X1, d1) are bi-uniformly isomorphic
if there is a uniformly continuous bijection f : X0 → X1 with uniformly conti-
nuous inverse. Two metrics d0, d1 on the same space X are uniformly equivalent
if (X, d0) and (X, d1) are bi-uniformly isomorphic under the identity map.

Lemma 5.4. (i) If d is a [0, 1]-valued metric and α : [0, 1] → [0, 1] is a conti-
nuous, concave, non-decreasing function satisfying α(0) = 0, then α(d) ∨ d is a
metric that is uniformly equivalent to d.

(ii) If (X, d) is a metric space with diameter ≤ 1 and fi : X → [0, 1], i ∈ I,
is a family of uniformly uniformly continuous functions with continuous, sub-
additive, non-decreasing modulus of uniform continuity α, then (X,α(d)∨ d) is
a metric space bi-uniformly isomorphic to (X, d), such that the family {fi}i∈I
is 1-Lipschitz.

Proof. (i) Concave functions are sub-additive. All of the pseudo-metric axioms
are preserved under composition with sub-additive, non-decreasing functions
which �x 0, so α(d) is a pseudo-metric. The maximum of two pseudo-metrics is
still a pseudo-metric, so α(d) ∨ d is a pseduo-metric. α(d) ∨ d = 0 if and only if
d = 0, so it is actually a metric. α(d)∨d and d are clearly uniformly equivalent.

(ii) This is immediate from (i).

In the previous lemma we only need to take the maximum with d on the o�
chance that α = 0 and there's no harm in doing so.

Lemma 5.5. If L is a countable metric signature, then it is interde�nable
with a uniformly uniformly continuous metric signature K. Furthermore if L is
computable, then we can take K to be uniformly computable in L.
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Proof. Let {Pi}i<ω = P be an enumeration of all the predicate symbols in L (in
any sort). For each i < ω, let Qi be the L-formula 2−(i+1)Pi. The L-formulas
Qi are uniformly uniformly continuous with regards to the modulus of uniform
continuity ∆ =

∑
i<ω 2−(i+1)∆Pi

. If we let K be a metric signature with the
same sorts as L and predicate symbols for the Qi, each with ∆Qi

= ∆, then K
is the required metric signature.

The procedure described in Lemma 5.2 is uniformly computable, so passing
from L to K is uniformly computable as well.

Proposition 5.6. (i) If L is a countable metric signature, then it is interde�na-
ble with a 1-Lipschitz metric signature K, i.e. a signature such that ∆P (x) = x
for all predicate symbols P (although not for metrics, which are necessarily 2-
Lipschitz). Furthermore K is uniformly computable from L.

(ii) There is a K theory TL such that the models of TL are precisely the
interpretations of L-structures as K-structures. Furthermore TL is uniformly
computable from L.

Proof. (i) Aside from what we have already outlined in this section, the only
subtlety is that the passage from d to α(d) ∨ d may delete some information
contained in d due to `clipping' wherever α is locally constant. To remedy
this all we need to do is add a new binary 1-Lipschitz predicate symbol Pd,O
for each sort O whose interpretation is 1

2dO before running the construction
in this section. This doesn't prevent α from clipping the metric, but we lose
no information since we have an unmodi�ed copy of the original metric as a
predicate.

(ii) TL just needs to express that every predicate symbol is uniformly conti-
nuous with regards to the original metrics dO = 2Pd,O in the appropriate way,
i.e. with axioms of the form

sup
x,y
|P (x)− P (y)| ·−∆P (2Pd,O(x, y)),

and analogous axioms for predicates on more than one sort.

6 Encoding in metric spaces

Most of the coding tricks used in the two following constructions boil down to
the fact that if X and Y are metric spaces with diameter ≤ 1, then for any 1-
Lipschitz function f : X ×Y → [0, 1], you can put a metric on X tY by setting
d(x, y) = 2 + f(x, y) for x ∈ X and y ∈ Y , so assuming we can de�ne X and
Y , we can recover f from the metric alone. The other fundamentally important
thing is that since our metric structures have bounded diameter, we can add
points at a larger diameter to ensure that they are ∅-de�nable regardless of the
content of the embedded metric structure.

Theorem 6.1. (i) If L is a countable metric signature, then for any CL,r, there
is a uniformly de�nable imaginary X such that for any A ∈ CL,r, A and the
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purely metric reduct XA
0 = (XA, d) are uniformly bi-interpretable in the sense

that

• there are uniformly de�nable imaginary expansions of A and XA
0 which

are uniformly interde�nable, and

• there are uniformly de�nable bijections between the sorts of A and de�nable
subsets of XA

0 , and X
A
0 is contained in the de�nable closure of the images

of those bijections.

Furthermore the interpretation preserves embeddings and (uniform) d-�niteness
of types. If the original structure is not strongly in�nite dimensional, then the
interpreted structure will also not be strongly in�nite dimensional. The inter-
pretation preserves local compactness and local �nite dimensionality away from
a �xed, compact, ∅-de�nable set of bad points.

(ii) For any countable metric signature L, there is a �rst-order theory TL
and a sentence Ξ such that for any r ∈ (0, 1], the class of metric spaces of the
form XA

0 for A ∈ CL,r is precisely the set of models of TL ∪ {r ·− Ξ}. If L is
a computable signature, then TL is computable. Ξ does not depend on L and is
always computable.

Furthermore there are computable mappings of presentations of L-structures
to presentations of models of TL and vice versa (these mappings do not depend
on r).

Proof. (i) By applying Lemma 3.2, we may assume that L has a uniform arity
bound of 2. By applying Propositions 4.3 and 5.6, we may assume that L has
a single sort and is 1-Lipschitz. By recasting unary predicates P as binary
predicates using P (x, y) = P (x), we may assume that all predicates are binary.

Let {Pn}n<ω be an enumeration of all predicates with P0(x, y) = 1
2d(x, y).

XA will have the set AtA× ω t {∞, t} as its universe, where A× ω t {∞}
will be a modi�ed countable metric disjoint union, with over�ow point ∞, and
t will be a tag to keep things straight. XA will have the unique metric de�ned
by:

• d(x, y) = dA(x, y), for x, y ∈ A.

• d(x, (y, n)) = 2 + 2−n−1dA(x, y), for x ∈ A and (y, n) ∈ A× ω.

• d(x,∞) = 2 for x ∈ A.

• d(x, t) = 5, for x ∈ A.

• d((x, n), (y, n)) = 2−ndA(x, y), for (x, n), (y, n) ∈ A× ω.

• d((x, n), (y, n+ 1)) = 2−n−1(1 + PA
n (x, y)), for (x, n), (y, n+ 1) ∈ A× ω.

• d((x, n), (y,m)) = |2−n−2−m|, for (x, n), (y,m) ∈ A×ω with |n−m| > 1.

• d((x, n),∞) = 2−n
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• d((x, n), t) = 4 + 2−n−1, for (x, n) ∈ A× ω.

• d(∞, t) = 4

All of the metric space axioms except for the triangle inequality are clearly
obeyed by d. If all three points are in the same copy of A then the triangle
inequality is obeyed, so we only need to check mixed triples. The majority of
cases are mechanical to check, but there are a handful of tight or subtle cases
that we will write out explicitly. Let x, y ∈ A and (z, n), (w, n), (u, n+1), (v, n+
1), (s,m) ∈ A×ω with |n−m| > 1, where n,m < ω. Also, recall that if n 6= m,
then |2−n − 2−m| ≥ 2−n−1.

• d(x, (z, n)) ≤ 2 + 2 · 2−n−2 ≤ d(x, (u, n+ 1)) + d((u, n+ 1), (z, n))

• d((z, n), (u, n+ 1)) ≤ 2−n−1(1 + Pn(w, u) + d(z, w))
≤ d((z, n), (w, n)) + d((w, n), (u, n+ 1))

• d((z, n), (w, n)) ≤ 2 · 2−n−2 ≤ d((z, n), (u, n+ 1)) + d((u, n+ 1), (w, n))

• d((z, n), (v, n+ 1)) ≤ 2−n−1(1 + Pn(z, u) + d(u, v))
= d((z, n), (u, n+ 1)) + d((u, n+ 1), (v, n+ 1))

• d((z, n), t) = 4 + 2 · 2−n−2 ≤ d((z, n), (u, n+ 1)) + d((u, n+ 1), t)

Just as in the proof of Proposition 4.2, let Y = 0 ∪ {2−n : n < ω} and let
Q : Y → [0, 1] be the natural inclusion map, which is a de�nable predicate on
Y . For each n, let

Rn(x) = 1 ·− 2n+1|Q(x)− 2−n|,

and de�ne a pseudo-metric, ρ, on Y ×A by

βn(x, y) = Rn(x0)Rn+1(y0)Pn(xn+1, yn+2) +Rn+1(x0)Rn(y0)Pn(yn+1, xn+2),

ρ(x, y) = |Q(x0)−Q(y0)|+
∑
n<ω

2−n
(
Rn(x0)Rn(y0)d(xn+1, yn+1) +

1

2
βn(x, y)

)
.

Then Y ×A/ρ will correspond to A×ωt{∞}, where∞ is the ρ-equivalence
class of any element of the form 〈0, x〉 for x ∈ A.

Recall that an element or set is de�nable if there is a formula which de�nes
its distance predicate. If we have a {0, 1}-valued indicator function, ϕ(x), for
the set ϕ−1(0), then that's even better and we can always de�ne the distance
to the set by d(x, ϕ−1(0)) = infy d(x, y) + 5ϕ(y) if we need it. Once a point
is de�nable we'll freely use it as a constant to make the following formulas
simpler[5, Proposition 9.18]. We'll either �nd an indicator function or a distance
predicate for a given set, whichever is easier to write down (although 0 ∈ I does
not have a de�nable indicator function).

16



First note that the following formula is 0 if and only if x = t and 1 otherwise

χ(x) = sup
y
d(x, y) ∧ (4 ·− d(x, y)) ∧ 1,

because t is the only point for which there is no x with 2 ≤ d(x, t) ≤ 3. So t
is de�nable and we can use it as a constant to de�ne distance predicates for A
and each A× {n},

d(x,A) = inf
y
d(x, y) + 2|d(y, t)− 5|, (†)

d(x,A× {n}) = inf
y
d(x, y) + 2|d(y, t)− (4 + 2−n−1)|. (†)

These formulas work because of how we de�ned distances to t. |d(y, t) − 5|
and |d(y, t)− (4+2−n−1)| roughly give the distances to A and A×{n} and then
we plug those into formulas similar to the one used in the proof of Proposition
9.19 in [5] to get exact distance predicates.

For each n < ω, there is a de�nable bijection from A to A× {n} given by

d(y, fn(x)) = 2n+1(d(x, y) ·− 2), (◦)
and so for any n < ω, we can de�ne Pn on A by

Pn(x, y) = 2n+1(d(fn(x), fn+1(y)) ·− 1),

So X is the required uniformly de�nable imaginary, which clearly preserves
embeddings. The interpretation preserves (uniform) d-�niteness of types, lack of
strong in�nite dimensionality, local compactnes, and local �nite dimensionality
by the same argument as in the proof of Lemma 4.4, i.e. the inclusion maps are
open isometries-up-to-scaling.

The advertised set of bad points is {∞, ∗}∪
⋃
n<ω(∗, n). Since this is a closed

compact set of ∅-de�nable points, it is algebraic over ∅.
(ii) TL is a theory in the language of metric spaces of diameter 5. By Lemma

3.2 and Propositions 4.2 and 5.6, we only need to construct TL in the case where
L has one sort and is 1-Lipschitz.

Recall that for a given formula ϕ there are axioms determined by ϕ that hold
exactly when ϕ is the distance predicate of a de�nable set[5, Theorem 9.12].
Since these axioms are a �xed set of reduced sentences depending on ϕ, they're
uniformly computable from ϕ. TL contains axioms saying that infy d(x, y) +
5χ(y) is the distance predicate of a de�nable set, and that the corresponding
set is non-empty and has diameter 0. Let t denote the unique element of that
de�nable set, for the sake of making the following axioms simpler to write down.
Let f : [0, 5] → [0, 1] be a computable total continuous function whose zeroset
is precisely Z = {4 + 2−n−1 : n < ω} ∪ {4, 5}. TL has the following axioms

sup
x
f(d(x, t)),

inf
x
|d(x, t)− r|, for r ∈ Z.
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The �rst says that distances to t only take on values in Z. The second says
that every distance in Z comes arbitrarily close to being attained (for isolated
points in Z, i.e. everything except 4, this implies that the distance is exactly
attained).

TL also has axioms saying that the formulas (†) are distance predicates
to de�nable sets, i.e. that A and A × {n} are de�nable sets. We also need
axioms saying that the formula (◦) de�nes isometries-up-to-scaling between A
and A×{n}, i.e. if we let DPx[P (x)] be the sentence given in [5, Theorem 9.12]
asserting that P(x) is a distance predicate for a de�nable set, then we have

sup
x∈A

DPy∈A×{n}[2
n+1(d(x, y) ·− 2)],

sup
y∈A×{n}

DPx∈A[2n+1(d(x, y) ·− 2)],

where DPx∈D[P (x)] is DP relativized to the de�nable set D. Those two
axioms state that the predicate 2n+1(d(x, y) ·− 2) gives a distance predicate on
A for each element of A× {n} and vice versa. We also need

sup
x∈A

inf
y∈A×{n}

2n+1(d(x, y) ·− 2),

sup
y∈A×{n}

inf
x∈A

2n+1(d(x, y) ·− 2),

which say that the distance predicates always give non-empty de�nable sets.
And we need

sup
x∈A

sup
y0,y1∈A×{n}

d(y0, y1) ·− 4
[
2n+1(d(x, y0) ·− 2) + 2n+1(d(x, y1) ·− 2)

]
,

sup
y∈A×{n}

sup
x0,x1∈A

d(x0, x1) ·− 4
[
2n+1(d(x0, y) ·− 2) + 2n+1(d(x1, y) ·− 2)

]
,

which say that the de�nable sets have diameter 0, i.e. that they are single
points.2

And �nally we need to actually assert that this function is an isometry-up-
to-scaling:

2These two are just parameterized relativizations, i.e. Q(x, y) = supz∈D(y) P (x, z), which

do work in general for families of uniformly de�nable sets but weren't treated in [5]. Likewise
the �rst, third, and �fth axioms in this series are just instances of a schema

sup
x
DPy [P (x, y)],

sup
x

inf
x
P (x, y),

sup
x

sup
y,z

d(y, z) ·− 4[P (x, y) + P (x, z)],

asserting that P (x, y) is a predicate de�ning a function.
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sup
x0,x1∈A

sup
y0,y1∈A×{n}

|d(x0, x1)−2nd(y0, y1)| ·−2n+3 [(d(x0, y0) ·− 2) + (d(x0, y1) ·− 2)] .

Furthermore we need axioms enforcing the de�nition of d given in part (i)
of this proof, other than the line involving Pn (which isn't determined by TL)
and lines involving ∞ (which are automatically enforced by continuity). The
distances between A and A× {n} are already enforced by the previous axioms.
We need the following

sup
x∈A
|d(x, t)− 5|,

sup
x∈A×{n}

sup
y∈A×{m}

|d(x, y)− |2−n − 2−m||, for |n−m| > 1,

sup
x∈A×{n}

|d(x, t)− (4 + 2−n−1)|.

For the Pn line we just need to enforce the lower bound of 2−n−1, the upper
bound of 2−n, and that Pn (which is de�nable from d since we can de�ne the
sets A × {n}) obeys the correct modulus of uniform continuity (relative to the
predicate 2P0, since the metric itself may have lost information due to clipping),

sup
x∈A×{n}

sup
y∈A×{n+1}

(2−n−1 ·− d(x, y)) ∨ (d(x, y) ·− 2−n),

sup
x0,x1,y0,y1∈A

|Pn(x0, x1)− Pn(y0, y1)| ·−∆Pn(2(P0(x0, y0) ∨ P0(x1, y1))).

For those predicate symbols that were originally unary we need axioms en-
forcing that Pn only depends on one input,

sup
x,y0,y1∈A

|Pn(x, y0)− Pn(x, y1)|, Pn unary.

The existence of ∞ and its de�nability are implied by these other axioms
(since the A × {n} form a Cauchy sequence of de�nable sets in the Hausdor�
metric whose diameters are limiting to 0 and a Hausdor� metric limit of de�nable
sets is de�nable). Finally Ξ is just a sentence that evaluates to the diameter of
the set A,

Ξ = sup
x,y∈A

d(x, y).

Assuming that the signature has �nitely many sorts and a uniform arity
bound (but maybe in�nitely many predicate symbols) we can avoid the bad
points entirely, but the construction is di�erent. It is somewhat less delicate than
the construction in Theorem 6.1, so we'll only sketch the important speci�cs.
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Theorem 6.2. If L is a countable metric signature with �nitely many sorts and
a uniform arity bound, then the result of Theorem 6.1 holds with no bad points,
i.e. the bi-interpretation preserves local compactness and �nite dimensionality
everywhere.

Proof. By applying Proposition 5.6, we may assume that L is 1-Lipschitz. Let
{On}n<k be a �nite list of all base sorts and let {Nn}n<` be a �nite list of all
�nitary product sorts of the form

∏
O∈a(P )O for some predicate symbol P . The

sort X will be constructed from a graph with the following nodes:

• For each n < k, a main copy of the sort On.

• For each n < `, a copy of Nn =
∏
O∈a(P )O along with copies of each O in

a(P ) (with multiplicity).

• For each n < `, a copy of I = {0} ∪ {2−s : s < ω}.

Connections between the nodes will correspond to speci�c relationships being
encoded in the metric.

• For each main copy of On and each copy of On associated to some Nm
there is an edge. Call the associated copy O′n. The metric between x ∈ On
and y ∈ O′n will be given by d(x, y) = 2 + dOn

(x, y), in order to encode a
de�nable bijection between On and O′n.

• For each Nm and associated O′n there is an edge. If O′n is the ith factor
of Nm, then the metric between x ∈ Nm and y ∈ O′n will be given by
d(x, y) = 2 + dOn

(xi, y), in order to encode a de�nable projection from
Nm to O′n.

• For each Nm and its associated copy Im of I there is an edge. Let {Pn}n<ω
be a list of the predicates symbols on Nm. If x ∈ Nm and 2−n ∈ I, then
d(x, 2−n) = 2 + 2−nPn(x) and d(x, 0) = 2. (This is where it's important
that the predicate symbols be 1-Lipschitz. If Pn is not 1-Lipschitz, this
formula cannot de�ne a metric).

Let all other distances be 4. Finally add a single new point t, with distances
to everything else between 5 and 6 chosen to make each node of the graph have
a t-de�nable indicator function. Then using the same kind of formula as in the
proof of Theorem 6.1, t is ∅-de�nable, so each of the nodes in the graph is
de�nable as well.

Note that for any function η(x) taking on 0 on some copy of I and 1 every-
where else the formula(

η(x) + 8 sup
y
d(x, y) ∧

(
1

2
·− d(x, y)

))
∧ 1

is {0, 1}-valued and takes on the value 0 if and only if x = 1 ∈ I, so we can
use 1 ∈ I as a constant and for each n ≤ ω, we can de�ne a distance predicate
for 2−n ∈ I (with 2−ω = 0) by
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d(x, 2−n) = inf
y
d(x, y) + 2|d(y, 1)− (1− 2−n)|

So each point in each copy of I is ∅-de�nable.
Every point in XA is either an image of some Cartesian product of sorts

in A or contained in a compact clopen de�nable set (either a copy of I or t).
Finitary products preserve local compactness and local �nite dimensionality, so
in this construction there are no `bad points.'

6.1 Finite axiomatizability in continuous logic

The notion of �nite axiomatizability is somewhat awkward in continuous logic.
There are several possible de�nitions that suggest themselves, but none of them
seem useful. This is the most literal transcription of the ordinary de�nition:

De�nition 6.3 (Finite axiomatizability version 1). A theory T is �nitely axi-
omatizable if and only if it is axiomatized by a �nite collection of sentences.

Depending on what we mean by `sentence' every theory in a countable lan-
guage is �nitely axiomatizable in that continuous logic naturally has an in-
�nitary conjunction of the form Σn<ω2−nϕn and we can just let ϕn be an
enumeration of a countable dense subset of the logical consequences of T .

A sensible attempt to avoid this would be a de�nition like this:

De�nition 6.4 (Finite axiomatizability version 2). A theory T is �nitely ax-
iomatizable if and only if it is axiomatized by a �nite collection of restricted
sentences.

But this is arbitrary and fails to have any obvious meaningful semantic
consequences.

We can try a more directly semantic de�nition like this:

De�nition 6.5 (Finite axiomatizability version 3). A theory T is �nitely axi-
omatizable if and only if the class of models of T and its complement are both
elementary.

Which amounts to saying [T ] = {T ′ ∈ S0(∅) : T ′ ` T, T ′ a complete theory}
is a clopen subset of S0(∅). The problem is that for any reasonable3 metric
signature S0(∅) is connected, so the only �nitely axiomatizable theories are
the trivial theory and the inconsistent one. That said, `�nite axiomatizability
version 3' relative to a theory can be non-trivial.

3If all function symbols in L have concave moduli of continuity, then S0(∅) can be con-
tinuously retracted to a point by scaling all non-metric relations to 0 and then scaling the
metric to 0. On the other hand, if ∆f (x) = x2 and the metric has diameter ≤ 1, then the
sentence

inf
x
d(x, f(x))

can only take on the values 0 or 1: Either there exists some x such that d(x, f(x)) < 1, in
which case x, f(x), f(f(x)), . . . converges to a �xed point of f , or for every x, d(x, f(x)) = 1.
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At this point we could argue that clopenness in type space is too strong
of a condition in continuous logic. De�nable sets do not correspond to clopen
subsets of type space, but rather have a more subtle topometric characterization
in terms of the d-metric: A closed set D ⊆ Sn(T ) is de�nable if and only if
D ⊆ int{p ∈ Sn(T ) : d(p,D) < ε} for every ε > 0, where intX is the topological
interior of X. By analogy we could try a similar weakening of clopen as a basis
for our de�nition of `�nite axiomatizability,' but the d-metric relies on T being
a complete theory and for a complete theory S0(T ) is trivial.

There are, however, contexts in which there is a meaningful non-trivial metric
on S0(T ) for an incomplete theory T , speci�cally if we're examining a notion of
approximate isomorphism (such as the perturbations in [4] or Gromov-Hausdor�
distance) we get a metric on completions of T :

ρ(T0, T1) = inf{ε : A |= T0,B |= T1,A,B `ε-isomorphic'},

whatever `ε-isomorphic' might mean. And in this case we get a weaker notion
of �nite axiomatizability:

De�nition 6.6 (Finite axiomatizability version 4). A theory T is �nitely ax-
iomatizable relative to ρ if there is a sentence χ such that T ` χ and for all
complete theories T ′, T ′ ` χ ≤ ρ(T ′, [T ]), where ρ(T ′, [T ]) is the point-set dis-
tance between T ′ and [T ].

Which is equivalent to the topometric condition [T ] ⊆ int{T ′ ∈ S0(∅) :
ρ(T ′, [T ]) < ε} for every ε > 0. It should be noted that this is a proper genera-
lization of version 3 in that we can take our notion of approximate isomorphism
to be A and B are 0-isomorphic if they are isomorphic and 1-isomorphic if they
are not.

This may be a reasonable de�nition in some context, although as discussed in
[4] the metrics ρ are generally much more poorly behaved than the d-metric. In
any case it's unclear what one can do with this de�nition and to apply it to this
paper we would need to choose a notion of approximate isomorphism before
we could even ask the question of whether or not the theory TL is `�nitely
axiomatizable.'
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