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Abstract. We introduce a higher-arity stability notion defined in terms of k-splitting, a higher-arity gen-

eralization of splitting. We show that theories with bounded k-splitting have improved indiscernible extrac-

tion at k-ineffable cardinals, and we give a non-trivial example of a theory with bounded k-splitting but
unbounded (k − 1)-splitting for each odd k > 1. We also show that bounded k-splitting implies NFOPk, a

higher arity stability notion introduced by Terry and Wolf. We then use our indiscernible extraction result
together with a construction of Kaplan and Shelah to give a strong counterexample to the converse: an NIP

theory with unbounded k-splitting for every k. Finally, as a thematically related but technically independent

result, we show that treelessness implies NFOP2, sharpening a result of Kaplan, Ramsey, and Simon.

Introduction

In [11], Shelah introduced a natural higher-arity generalization of the independence property, the negation
of which is called k-dependence or NIPk. Since then, some model theorists and combinatorialists have tried
to find good higher-arity generalizations of stability, with the most developed general notion currently in
print being the (negation of the) functional order property or (N)FOPk, introduced (for k = 2) by Terry and
Wolf in [14, 15] but also developed extensively for arbitrary k and in the infinitary model-theoretic setting
by Abd Aldaim, Conant, and Terry in [1]. In the binary case, Takeuchi defined in [12] a similar notion which
he called the 2-order property or OP2 and which is referred to in [1, 14] as the increasing functional order
property or IFOP2. In [6], Kaplan, Ramsey, and Simon also introduced the notion of treelessness, a mutual
generalization of stability and binarity, and demonstrated its model-theoretic significance by, among other
things, showing that any treeless NSOP1 theory is simple. These notions have a tight relationship with the
NIPk hierarchy (see Figure 1).

Generally speaking, a k-ary stability notion needs to be a reasonably well-motivated mutual generalization
of stability and k-arity.1 In this paper we are going to define a higher-arity stability notion (Definition 2.3)
by applying this philosophy to one of the basic motivation concepts in Shelah’s original development of
stability theory, namely splitting. As we will see in Section 6, however, the notion we arrive at doesn’t seem
to fit cleanly into the hierarchy in Figure 1.

Recall that a type tp(a/B) ∈ Sx(B) splits over C ⊆ B if there is a formula φ(x, y) and b, b′ ∈ A with
b ≡C b′ such that φ(a, b) and ¬φ(a, b′) hold [10, Def. I.2.6].

Fact 0.1 ([10, Lem. I.2.7]). T is stable if and only if there is a cardinal λ such that for any a and B, there
is a C ⊆ B with |C| < λ such that tp(a/B) does not split over C.

Splitting is quite important in Shelah’s original conception of stability theory. For example, Shelah defines
forking in terms of ‘strong splitting’ at the beginning of Chapter III of [10] and then introduces dividing a
few pages later.

Shelah doesn’t use the following terminology, but the concept is implicit in the statement of [10, Lem. I.2.5].

Definition 0.2. A sequence (ai)i<α of elements is tail-indiscernible over B if for any i < j < α and
ai ≡Ba<i

aj .
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1Recall that a theory T is k-ary (or satisfies the property of k-arity) if every formula is equivalent modulo T to a Boolean

combination of formulas with at most k free variables. A theory is binary if it is 2-ary.
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NIP

Stability NOP2 NFOP2 NIP2 NFOP3 NIP3 · · ·

Treelessness · · · NFOPk NIPk NFOPk+1 · · ·

[12]

[6, Cor 5.4]

Easy

Prop. A.4

Figure 1. Implications between higher-arity stability notions. All implications after
NFOP2 are [1, Prop. 2.8].

In the Ramsey theory literature, the analogous condition to tail-indiscernibility is sometimes called end-
homogeneity.

The significance of this condition is that the task of finding an indiscernible sequence can be factored into
non-splitting and tail-indiscernibility.

Fact 0.3 (Shelah [10, Lem. I.2.5]). If (ai)i<α is tail-indiscernible over B and for each i < α, tp(ai/Ba<i)
does not split over B, then (ai)i<α is indiscernible over B.

This fact is essentially why stability allows for improved indiscernible extraction. Bounded splitting
ensures that any sufficiently long tail-indiscernible sequence will be indiscernible on a large subsequence,
and, unlike ordinary indiscernibility, tail-indiscernibility is easy to find lying around:

Fact 0.4. For any set of parameters B, λ ≥ |T | + |B|, and sequence (ai)i<ℶ(λ)+ , there is an X ⊆ ℶ(λ)+
with |X| = λ+ such that (ai)i∈X is tail-indiscernible over B.

Proof. This is essentially a step of a common proof of the Erdős-Rado theorem. Define a sequence (βj)j<λ+

of ordinals less than ℶ(λ)+ inductively by letting βj be the smallest ordinal less than ℶ(λ)+ and greater
than supℓ<j βℓ satisfying that for any Y ⊆ supℓ<j βℓ with |Y | ≤ λ, every type2 over B ∪ {ai : i ∈ Y } that is

realized by an element of the sequence (ai)i<ℶ(λ)+ is realized by some ai with i < βj . (Such a βj < ℶ(λ)+
always exists.) Since λ+ ≤ ℶ(λ), the sequence (βj)j<λ+ is not cofinal in ℶ(λ)+, so let γ = supj<λ+ βj . For

each j < κ+, let δj be the least ordinal greater than βj such that aδj ≡Ba<βj
aγ . (Such a δj must always

exist by construction.) Let X = {δj : j < κ+}. Clearly |X| = κ+ and it is easy to check that the sequence
(ai)i∈X is tail-indiscernible over B. □

We can use this to easily prove a sloppy version of Shelah’s theorem [10, Thm. I.2.8] on indiscernible
extraction in stable theories:

Proposition 0.5. Let T be a stable theory with κ a cardinal witnessing this in the sense of Fact 0.1. Let B
be a set of parameters in a model of T . Let λ be a fixed cardinal satisfying that λ ≥ |T |+ |B|+ κ. For any
sequence (ai)i<ℶ(λ)+ , there is a set X ⊆ ℶ(λ)+ with |X| = λ+ such that (ai)i∈X is indiscernible over B.

Proof. By Fact 0.4, we can find a set Y ⊆ ℶ(λ)+ with |Y | = λ+ such that (ai)i∈Y is tail-indiscernible over
B. Re-index this as a sequence (ai)i<κ+ .

For each i < κ+, let f(i) be the least j ≤ i such that tp(ai/Ba<i) does not split over B. The set
S = {i < λ+ : cf(i) ≥ κ} is stationary in λ (since cf(λ+) = λ+ > κ). By the choice of κ, we have that f(i)
is a regressive function on S, so, by Fodor’s lemma, there is a γ < λ and a stationary set X ⊆ S such that
f(i) = γ for any i ∈ X. We now have that for all i ∈ X, tp(ai/B ∪ a<minX ∪ {aj : j < i, j ∈ X}) does not
split over B ∪ a<minX . Therefore, by Fact 0.3, we have that (ai)i∈X is indiscernible over Ba<minX and so
indiscernible over B. □

Of course the actual theorem is a more precise result in that we are able to extract an indiscernible
sequence of length λ+ from any sequence of length λ+ whenever T is λ-stable, but it’s important to point
out that even Proposition 0.5 is non-trivial. Unless there is an ω-Erdős cardinal, there isn’t even an analog
of Proposition 0.5 for arbitrary theories with the weaker conclusion that |X| = ℵ0.

2This step in particular can be improved in the context of a λ-stable theory.
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There is a second kind of theory that has indiscernible extraction without the assumption of large cardinals.
In a k-ary theory, a sequence is indiscernible if and only if it is k-indiscernible (i.e., satisfies that any two
increasing subsequences of length k have the same type). The Erdős-Rado theorem easily gives the following.

Fact 0.6 (Erdős-Rado). For any k-ary theory T and sequence of elements (ai)i<ℶk(|T |)+ , there is a set

X ⊆ ℶk(|T |)+ with |X| =
(
2|T |)+ such that (ai)i∈X is indiscernible.

There is a relationship between Facts 0.1 and 0.6, which is that Fodor’s lemma and the Erdős-Rado
theorem are in some sense different generalizations of the infinitary pigeonhole principle. Erdős-Rado, like
all Ramsey-like theorems, is a higher-arity generalization, and Fodor’s lemma is a generalization that allows
for an ‘increasing’ set of pigeonholes. There are further mutual generalizations of these (i.e., partition
properties that involve both higher arity and an increasing set of ‘hyper-pigeonholes’), but like other strong
partition properties, they end up characterizing certain kinds of large cardinals.

1. k-ineffability and k-tail-indiscernibility

Definition 1.1 (Baumgartner [3]). A function f : [λ]k → 2µ is regressive if f(A) ⊆ minA for all A ∈ [λ]k.
Given such a function f , a set X ⊆ λ is f -homogeneous if for any A,B ∈ [λ]k, f(A) ∩ min(A ∪ B) =
f(B) ∩min(A ∪B).

A limit cardinal µ is k-ineffable if for any regressive function f : [µ]k → 2µ, there is an f -homogeneous
stationary set A ⊆ µ. An ineffable cardinal is a 2-ineffable cardinal.

The theory of k-ineffable cardinals was originally developed by Baumgartner [3], but Friedman’s paper [4]
is easier to find, and as such we will be citing Friedman in this paper. Any k-ineffable cardinal is strongly
inaccessible [4, Lem. 10]. It’s also fairly straightforward to show that if µ is k-ineffable, then for any λ < µ,
µ satisfies the partition relation µ→ (µ)kλ.

Given a sequence (ai)i<α and a tuple of indices ı̄ = i0, . . . , in−1, we will sometimes write aı̄ for the tuple
ai0 , . . . , ain−1 .

Definition 1.2. A sequence (ai)i<µ of elements is k-tail-indiscernible over B if for any i < µ and increasing
k-tuples n̄, m̄ > i, an̄ ≡Ba<i am̄.

It is relatively straightforward to modify a proof of the Erdős-Rado theorem (such as the one of [13,
Thm. C.3.2]) to generalize Fact 0.4 to k-tail-indiscernibility. In particular, one can show that for any theory
T , set of parameters B, and sequence (ai)i<ℶk(|T |+|B|)+ , there is an X ⊆ ℶk(|T | + |B|)+ of order type

ℶ(|T |+ |B|)+ such that (ai)i∈X is k-tail-indiscernible over B. Our ultimate goal, however, is to extract an
indiscernible sequence that is the same size as the original sequence, so we need a stronger result.

Proposition 1.3. For any L-theory T , set of parameters B, any k-ineffable cardinal µ > |T |+ |B|, and any
sequence (ai)i<µ of γ-tuples (with γ < µ) in a model of T , there is a stationary set X ⊆ µ such that (ai)i∈X

is k-tail-indiscernible over B.

Proof. By adding B as a set of constants to T , we may assume without loss of generality that B = ∅. Fix
a k-tuple of γ-tuples of variables x̄ = x0 . . . xk−1. We will define a sequence (χj)j<µ inductively such that
for each i < µ, χj is either an element of the sequence (ai)i<µ or a formula. Moreover, we will define an
increasing sequence (ji)i<µ of indices such that χji = ai for each i < µ.

To do this, suppose we are at some stage α < µ and suppose that we have defined ji for all i < α and
χj for j in some initial segment of µ. Let jα be the least element of µ such that χjα is not defined. Let
χjα = aα. Find an ordinal β < µ with β > jα such that the cardinality of β \jα is the same as the cardinality
of the set of formulas in the variables x̄ with parameters among a<α. (Note that this is always possible since
µ is a strongly inaccessible cardinal. Also note that β as defined here will be jα+1 in the next stage of the
construction.) Define χj for j ∈ β \ jα such that (χj)jα<j<β is an enumeration of these formulas. Then
proceed to the next stage of the construction.

Note that in the above construction we have ensured that the set {ji : i < µ} is a club (because for limit
i < µ, ji = sup{ji′ : i′ < i}).

Now define a regressive function f : [µ]k → 2µ in the following way:

• If any of the elements of A ∈ [µ]k are formulas, then f(A) = ∅.
3



• If A ∈ [µ]k is {χji0
, . . . , χjik−1

} = {ai0 , . . . , aik−1
} (in increasing order), then f(A) is the set of j < ji0

such that χj is a formula φ(x0, . . . , xk−1) such that φ(ai0 , . . . , aik−1
) holds.

Now since µ is k-ineffable, we can find an f -homogeneous stationary set Y ⊆ µ. Since {ji : i < µ} is a
club, we may assume that Y ⊆ {ji : i < µ}. Let X = {i < µ : ji ∈ Y }, and note that X is also a stationary
set. It is now immediate by construction that for any two increasing k-tuples of indices i0, . . . , ik−1 and
i′0, . . . , i

′
k−1, the tuples ai0 , . . . , aik−1

and ai′0 , . . . , ai′k−1
satisfy the same formulas over a<min{i0,i′0}, so the

sequence (ai)i∈X is k-tail-indiscernible, as required. □

One thing to note is that there is a mismatch between indiscernible extraction in the context of stability
and what we are doing here. In stability, one leverages λ-stability to show that one can extract a 1-tail-
indiscernible sequence (ai)i∈X from any sequence (ai)i<λ+ (improving Fact 0.4). Here we are leaning on
k-ineffability since we seemingly need it as a replacement for Fodor’s lemma in the proof of Theorem 3.1
anyway.

2. Yet another higher-arity stability notion: Bounded k-splitting

We will adopt the common convention that given a list a0, . . . , ak−1, the expression a0, . . . , âi, . . . , ak−1

denotes the same list with the element ai removed. We will be using this notation frequently, such as in the
list of variables of a type (i.e., p(x0, . . . , x̂i, . . . , xk−1) is a type in the variables x0, . . . , xi−1, xi+1, . . . , xk−1).
We will also often write tuples of variables x̄ as just x without an over-bar, unless it is important to emphasize
the fact that x̄ is a tuple of variables.

Definition 2.1. A k-partitioned type is a type p(x0; . . . ;xk−1) with a designated partition of its variables
into k sets.

A k-partitioned type tp(a0; . . . ; ak−1/B) k-splits over C ⊆ B if there is a formula φ(x0, . . . , xk−1, y) and
b, b′ ∈ B such that

• for each i < k, b ≡Ca0...âi...ak
b′ and

• φ(a0, . . . , ak−1, b) and ¬φ(a0, . . . , ak−1, b
′) hold.

As one would hope, we get a generalization of Fact 0.3 with k-splitting and k-tail-indiscernibility.

Proposition 2.2. For any k < ω and α ≥ k, if (ai)i<α is k-tail-indiscernible over B and for each i0 <
· · · < ik−1 < α, tp(ai0 ; . . . ; aik−1

/Ba<i0) does not k-split over B, then (ai)i<α is indiscernible over B.

Proof. Assume that (ai)i<α is k-tail-indiscernible over B and has the non-k-splitting property in the state-
ment of the proposition. Clearly the sequence is already k-indiscernible over B (i.e., satisfies that any two
increasing subsequences of length k have the same type over B). We will prove by induction that the sequence
is n-indiscernible over B for every n < ω.

Assume that we have shown that the sequence is (n + k)-indiscernible over B for some n < ω. Fix
i0 < · · · < in+k < α. We need to show that ai0 . . . ain+k

≡B a0 . . . an+k.
By k-tail-indiscernibility, we have that

a0 . . . an−1an . . . an+k ≡B a0 . . . anain+1
. . . ain+k

.

Now considered the k-partitioned type p = tp(ain+1
; . . . ; ain+k

/Ba<in+1
). By n-indiscernibility, we have that

for each j ∈ {1, . . . , k},
a0 . . . an ≡Ban+1...ân+j ...an+k

ai0 . . . ain .

Therefore, since p does not k-split over B, we have that for any B-formula φ(x0, . . . , xk, y0, . . . , yn),

φ(ain+1 , . . . , ain+k
, a0, . . . , an) ↔ φ(ain+1 , . . . , ain+k

, ai0 , . . . , ain),

whereby a0 . . . anain+1
. . . ain+k

≡B ai0 . . . ainain+1
. . . ain+k

. Therefore a0 . . . an+k and ai0 . . . ain+k
have the

same type over B. Since we can do this for any such increasing (n + 1 + k)-tuple of indices, we have that
the sequence is (n+ 1 + k)-indiscernible over B. Therefore, by induction, the sequence is indiscernible over
B. □

Now it would seem to make sense to introduce the following definition by direct analogy with Fact 0.1.
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Definition 2.3. Given an ordinal γ, a theory T has λ-bounded k-splitting for γ-tuples if for any k-partitioned
type tp(ā0; . . . ; āk−1/B) (with each āi a γ-tuple), there is a C ⊆ B with |C| < λ such that tp(ā0; . . . ; āk−1/B)
does not k-split over C. T has λ-bounded k-splitting if for any finite n, T has λ-bounded k-splitting for n-
tuples. T has bounded k-splitting if it has λ-bounded k-splitting for some λ. T has unbounded k-splitting if
it does not have bounded k-splitting.

It is immediate that k-arity implies bounded k-splitting.

Proposition 2.4. If T is a k-ary theory, then it has 1-bounded k-splitting.

Proof. The k-arity condition implies that for any partitioned k-type tp(a0; . . . ; ak−1/B) and any b̄ ∈ B, the
type tp(b̄, ā) is isolated by

tp(a0, . . . , ak−1) ∪ tp(b̄, â0, . . . , ak−1) ∪ · · · ∪ tp(b̄, a0, . . . , âk−1),

whereby tp(a0; . . . ; ak−1/B) does not k-split over ∅. □

It is also relatively straightforward to see that bounded k-splitting implies bounded (k + 1)-splitting.

Lemma 2.5. If tp(a0; . . . ; ak−1/B) k-splits over C, then tp(a0; . . . ; ak−2/Bak−1) (k− 1)-splits over Cak−1.

Proof. This is immediate from the definition. □

Proposition 2.6. If T has λ-bounded k-splitting, then it has λ-bounded (k + 1)-splitting.

Proof. Fix a (k + 1)-partitioned type tp(a0; . . . ; ak/B). There is a set C with |C| < λ such that
tp(a0; . . . ; ak−1/Bak) does not k-split over C and therefore does not k-split over Cak. Therefore by
Lemma 2.5, tp(a0; . . . ; ak/B) does not (k + 1)-split over C. □

So in this way we can see that bounded k-splitting is a reasonable mutual generalization of stability and
k-arity, since stability is equivalent to bounded 1-splitting by Fact 0.1.

In the case of stability, of course, there is a strong bound on how big λ needs to be (i.e., if T has bounded
1-splitting, then it has |T |+-bounded 1-splitting). We can prove the analogous bound for k-splitting fairly
easily, which we will use later in Section 6 to establish that there are NIP theories with unbounded k-splitting
for every k. We will also take the opportunity to prove that bounded k-splitting for types in finitely many
variables entails bounded k-splitting for types in infinitely many variables.

Proposition 2.7. If T has bounded k-splitting, then for any ordinal γ, T has (|T |+ |γ|)+-bounded k-splitting
for γ-tuples. In particular, if T has bounded k-splitting, then it has |T |+-bounded k-splitting.

Proof. Fix an ordinal γ and let δ = |T | + |γ|. Suppose that T does not have δ+-bounded k-splitting for
γ-tuples. Then there is a set B and a k-partitioned type tp(a0; . . . ; ak−1/B) ∈ Sx̄(B) (with each ai a γ-tuple)
such that p k-splits over every C ⊆ B with |C| ≤ δ. Define sequences (bj)j<δ+ , (b

′
j)j<δ+ , and (φj(x̄, ȳ))j<δ+

inductively so that for each j < δ+,

• for each o < k, bj ≡a0...âi...akb<jc<j
b′j and

• φj(a0, . . . , ak−1, bj) and ¬φj(a0, . . . , ak−1, b
′
j) hold.

Since δ+ is a regular cardinal, there must be some fixed formula φ such that |{j < δ+ : φj = φ}| = δ+.
Therefore, we may assume that φj is always equal to some fixed formula φ. Moreover, we may restrict the
tuples ai to some finite subtuple. By compactness we can stretch this configuration to arbitrary length (since
the above bulleted items and the fact that {φ(x̄, bj) : j < δ+} ∪ {¬φ(x̄,¬b′j) : j < δ+} is finitely consistent
are part of the type of b<δ+b

′
<δ+), so for any λ, we can find a set of parameters B such that that some type

p(x̄0; . . . ; x̄k−1) (now with each x̄i a tuple in finitely many variables) k-splits over any C ⊆ B with |C| < λ.
The final statement follows by considering the case of finite γ. □

Unbounded k-splitting for k > 1 doesn’t seem to lend itself to being ‘unfolded’ into a combinatorial
configuration in the same way that unbounded 1-splitting can be shown to be equivalent to the order
property. This is also a barrier to trying to characterize bounded k-splitting in terms of some kind of type
counting condition. This raises the following question.

Question 2.8. Can bounded k-splitting be characterized by a more traditional combinatorial configuration
(such as the n-patterns of [2])? Can it be characterized in terms of type counting?
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3. Indiscernible extraction at k-ineffable cardinals from bounded k-splitting

Now we will prove our main theorem regarding extraction of indiscernible sequences at k-ineffable cardi-
nals.

Recall that Gödel defined a pairing function ⟨·, ·⟩ : Ord×Ord → Ord with the property that any cardinal
λ is closed under ⟨·, ·⟩. Note moreover that for any cardinal λ, the set of α < λ that are closed under g is a
club. We will refer to an ordinal closed under ⟨·, ·⟩ as ⟨·, ·⟩-closed.

Theorem 3.1. If T has bounded k-splitting and µ > |T | + |B| + |γ| is k-ineffable, then for any sequence
(ai)i<µ of γ-tuples of parameters, there is an X ⊆ µ with |X| = µ such that (ai)i∈X is indiscernible over B.

Proof. We may assume without loss of generality that B = ∅. Let δ = |T |+|γ|. Note that by Proposition 2.7,
we have that T has δ+-bounded k-splitting for γ-tuples. Since µ is strongly inaccessible, µ > δ+ as well. By
Proposition 1.3, we may assume without loss of generality that (ai)i<µ is k-tail-indiscernible.

Define a function f : [µ]k → 2µ as follows: Fix I = {i0, . . . , ik−1} with i0 < . . . ik−1 < µ.

• If i0 ≤ |T |+ or if i0 is not ⟨·, ·⟩-closed, then let f(I) = ∅.
• If i0 > |T |+ and i0 is ⟨·, ·⟩-closed, then let CI ⊆ i0 be some non-empty set of indices with |CI | ≤ |T |+

satisfying that tp(ai0 ; . . . ; aik−1
/a<i0) does not k-split over {aj : j ∈ CI}. Let hI : |T |+ → CI be a

surjection, and let f(I) = {⟨j, hI(j)⟩ : j < |T |+}. (Note that since i0 is ⟨·, ·⟩-closed, we have that
f(I) ⊆ i0 = min I.)

Since µ is k-ineffable, we can find a stationary set X ⊆ µ that is f -homogeneous. Since the set of ⟨·, ·⟩-closed
ordinals is a club in µ, we may assume that every element of X is ⟨·, ·⟩-closed. Since X is stationary, it must
be unbounded in µ, we may also assume that every element of X is greater than |T |+.
Claim. For any I, J ∈ [X]k, hI = hJ , and so in particular CI = CJ .
Proof of claim. Assume without loss of generality that min I ≤ min J . By the definition of f -homogeneity,
we have that f(I) = f(J) ∩min I. Since ⟨·, ·⟩ is a pairing function, this implies that hI ⊆ hJ . Since hI and
hJ are functions with the same domain, we have that hI = hJ . □claim

Unpacking what we have done, it follows from the claim that there is a single set C with |C| = |T |+ of
indices such that for any {i0, . . . , ik−1} ∈ [X]k, tp(ai0 ; . . . ; aik−1

/a<i0) does not k-split over a∈C := {aj : j ∈
C}. Therefore we also have that for any {i0, . . . , ik−1} ∈ [X]k, tp(ai0 ; . . . ; aik−1

/a∈C ∪ {aj : j < i0, j ∈ X})
does not k-split over a∈C . It is also immediate that the sequence (ai)i∈X is k-tail-indiscernible over a∈C , so by
Proposition 2.2, we have that (ai)i∈X is indiscernible over a∈C . Hence, a fortiori, (ai)i∈X is indiscernible. □

In [4, Lem. 13], it is shown that if there is an ω-Erdős cardinal κ, then there is a cardinal µ < κ that is
k-ineffable for every k. This implies that the improved indiscernible extraction in Theorem 3.1 is non-trivial.

Recall that the partition notation κ→ (δ)T,n (in the sense of Grossberg and Shelah [9, Def. 3.1(2), p. 208])
means that for any sequence of n-tuples of length κ in a model of T , there is an indiscernible sequence of
order type δ.

Question 3.2. Can the partition property established in Theorem 3.1 be improved? If T has bounded k-
splitting, for which κ, δ, and n does the partition relation κ → (δ)T,n hold? Does improved indiscernible
extraction for theories with bounded k-splitting require large cardinals?

It is know that in the development of simple theories, the common uses of the Erdős-Rado theorem are
unnecessary and can be replaced with Ramsey’s theorem [16], so one might hope that a similarly careful
analysis would give an analogous improvement here.

4. An application

At the moment we are only able to give one model-theoretic application of Theorem 3.1 whose conclusion
does not involve the concept of bounded k-splitting. This application is admittedly a bit underwhelming in
that it is only weakening a large cardinal assumption in a result for arbitrary theories in [5, Thm. 4.22]. In
particular, if it turns out that [5, Thm. 4.22] is provable without any large cardinal assumptions, then the
improvements given here are trivial.
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We will use the notation and definitions from [5], except we will systematically replace the prefix |⌣
bu
-

with bu- (e.g., an |⌣
bu
-Morley sequence is now a bu-Morley sequence) for the sake of reducing visual clutter

and improving verbal readability.

Proposition 4.1. Fix a theory T , a set of parameters B, and a (possibly infinite) tuple a. If there is a
cardinal µ such that µ→ (ω+ω)TB ,|a|, then there is a total bu-Morley sequence (ai)i<ω over B with a0 = a.

In particular, this occurs under any of the following assumptions:

(1) There is a cardinal µ satisfying µ→ (ω + ω)<ω
ℶ(|T |+|Ba|).

(2) T has bounded k-splitting and there is a k-ineffable cardinal µ > |T |+ |Ba|.
(3) T is strongly dependent and |a| < ω.
(4) T is k-ary.3

Proof. By [5, Prop. 4.14], we can find a bu-spread-out and s-indiscernible over B tree (af )f∈Tµ such that for
each f ∈ Tµ, af ≡B a. By assumption, we can find an X ⊆ µ with order type ω + ω such that the sequence
(aζµ

β
)β∈X is B-indiscernible. Let Y ⊆ X be first ω elements of X. Let Z0 ⊆ X \ Y be the first ω elements

of X \ Y . Let γ = minZ0 and Z = Z0 \ {γ}. Note that by construction supY ≤ γ.
It is now immediate that (a⊵ζµ

γ⌢i)i<ω is a bu-Morley sequence over B which is moreover B∪{aζµ
α
: α ∈ Z}-

indiscernible. Note that {aζµ
α
: α ∈ Y } is contained in (a⊵ζµ

γ⌢i)i<ω. Therefore by monotonicity of |⌣
bu

and

[5, Lem. 4.11], we have that {aζµ
α
: α ∈ Z} |⌣

bu

B
{aζµ

α
: α ∈ Y }. By [5, Thm. 4.9], we have that {aζµ

α
: α ∈ Z} is

a total bu-Morley sequence. By applying an automorphism fixing B pointwise, we get the required sequence
(ai)i<ω.

For the specific numbered assumptions, (1) is immediate, (2) follows from Theorem 3.1, (3) follows from
the fact shown in [11] that if T is strongly dependent, then ℶ|T |+(λ) → (λ+)T,n for any λ > |T | and n < ω
(see [7, Fact 1.10]), and for (4), choose some sufficiently large µ and use the Erdős-Rado theorem. □

Corollary 4.2. Fix a theory T , a set of parameters B, and a (possibly infinite) tuple a. If any of the
assumptions in Proposition 4.1 hold, then there is an infinite B-indiscernible sequence I with a ∈ I such
that for any c, a and c have the same Lascar strong type over B if and only if there are infinite sequences
J0,K0, J1, . . . ,Kn−1, Jn such that a ∈ J0, c ∈ Jn, and for each i < n, Ji + Ki and Ji+1 + Ki are B-
indiscernible and have the same Ehrenfeucht-Mostowski type as I.

Proof. This is immediate from Proposition 4.1 and [5, Prop. 4.3]. □

So in other words, under the assumptions of Proposition 4.1, there are indiscernible sequences that univer-
sally witness Lascar strong type in a strong way.4 It seems plausible that Proposition 4.1 and Corollary 4.2
can be weakened to the assumption of the existence of a k-subtle cardinal, possibly by using something like
[4, Lem. 6].

5. A family of examples

One of the basic examples of a stable theory is theory of an equivalence relation. One way to understand
the fact that this theory is stable is that it is ‘morally’ a unary theory:5 The type of an element is uniquely
determined by its ‘color’ (i.e., the equivalence class that it is in). The only reason that the theory isn’t
literally unary is that the number of colors can ‘grow with the model.’

We can use this point of view to define analogous theories of higher arity, yielding examples of theories
with bounded k-splitting that are neither stable nor k-ary. The idea is to simply consider a colored complete
k-ary hypergraph but with a number of colors that can also ‘grow with the model,’ which we implement with

3The fact that the k-ary case does not require a large cardinal really ought to have been pointed out in [5] but didn’t occur

to the author at the time.
4Ordinarily, a and a′ having the same Lascar strong type over B is witnessed by some sequence of indiscernible sequences

I0, . . . , In−1 with a ∈ I0, a′ ∈ In−1, and Ii ∩ Ii+1 ̸= ∅ for all i < n, with no restriction on the Ehrenfeucht-Mostowski types of

the Ii’s and no additional information of the form of Ii ∩ Ii+1.
5Although note that [1] takes the perspective that stable theories are morally binary (and more generally that NFOPk

theories are morally (k + 1)-ary). This difference has to do with how one conceptualizes the role of parameters. For the

purposes of this paper, however, the use of Fodor’s lemma in Proposition 0.5 clearly has a unary character to it.

7



an equivalence relation on unordered k-tuples. This is similar to the example discussed in [1, Prop. 3.29]
(which is a generic linear order on k-tuples from k distinct sorts).

Definition 5.1. Fix k ≥ 2. Let LEquiv
k be a language with a 2k-ary relation symbol E(x̄, ȳ). Let Equiv0k be

the LEquiv
k -theory that states

• E is a partial equivalence relation on k-tuples,
• E(x̄, x̄) if and only if xi ̸= xj for all i < j < k, and
• if xi ̸= xj for all i < j < k, then E(x̄, xσ(0) . . . xσ(k−1)) for every permutation σ : k → k.

Proposition 5.2. The finite models of Equiv0k form a Fräıssé class.

Proof. It is straightforward to check that models of Equiv0k have free amalgamation. The other properties of
a Fräıssé class are obvious. □

Let Equivk be the theory of the Fräıssé limit of the class of finite models of Equiv0k. Note that Equivk is
ℵ0-categorical and has quantifier elimination.

Lemma 5.3. For all ℓ < 2k, two ℓ-tuples ā and b̄ in a model of Equivk have the same type if and only if
they have the same type in the equational reduct.

Proof. The axioms of Equiv0k imply that there can be no realizations of the relation E in an ℓ-tuple for
ℓ < 2k. The result now follows from quantifier elimination. □

Proposition 5.4. Equivk is 2k-ary but not (2k − 1)-ary.

Proof. This follows immediately from quantifier elimination and Lemma 5.3. □

Given the story we told to motivate the definition of Equivk, one would expect that it should be ‘k-arily
stable,’ and while it does turn out to be NFOPk (Proposition 5.8), it also does not have bounded k-splitting.

Proposition 5.5. Equivk has unbounded (2k − 2)-splitting.

Proof. Fix an ordinal α. Consider the LEquiv
k -structure consisting of elements (bi)i<α, (ci)i<α, (b

′
i)i<α, (c

′
i)i<α,

and (ai)i<2k−2 satisfying that the only instances of the relation E are those generated by E(a0 . . . ak−2bi,
ak−1 . . . a2k−3ci) for i < α and the axioms of Equivk. (It is straightforward to check that such a structure
exists.) Consider it as a set of parameters in a model of Equivk. We need to argue that for every β <
α, the partitioned (2k − 2)-type tp(a0; . . . ; a2k−3/b<αc<αb

′
<αc

′
<α) (2k − 2)-splits over b<βc<βb

′
<βc

′
<β . It

is immediate from quantifier elimination that for each i < 2k − 2, bβcβ ≡b<βc<βb′<αc′<βa0...ĉi...a2k−3
b′βc

′
β .

Therefore since E(a0 . . . ak−2bβ , ak−1 . . . a2k−3cβ) and ¬E(a0 . . . ak−2b
′
β , ak−1 . . . a2k−3c

′
β) hold, we have an

instance of (2k − 2)-splitting.
Since we can do this for any ordinal α, Equivk has unbounded (2k − 2)-splitting. □

Proposition 5.6. Equivk has ℵ0-bounded (2k − 1)-splitting.

Proof. Fix a set of parameters B in a model of Equivk and a (2k − 1)-partitioned type tp(ā0; . . . ; ā2k−2/B).
For each k-tuple d̄ = d0 . . . dk−1 of elements from the tuple ā0ā1 . . . ā2k−2, if there is a k-tuple c̄ ∈ Bā0 . . . āk−1

not entirely contained in ā0 . . . āk−1 such that E(d̄, c̄) holds, let c̄d̄ be some such k-tuple. Let C be the set of
elements of B occurring in the tuples c̄d̄. Clearly |C| < ℵ0. We need to show that tp(ā0; . . . ; ā2k−2/B) does
not (2k − 1)-split over C.

Fix b̄ = b0 . . . bℓ−1 and d̄ = d0 . . . dℓ−1 in B satisfying that b̄ ≡Cā0...ˆ̄ai...ā2k−2
d̄ for each i < 2k − 1. By

quantifier elimination, all we need to do is check that whenever there is an instance of the E relation involving
elements of b̄, then the same relation holds with the corresponding elements of d̄. Any instance of the E
relation that does not involve an element from each of the tuples āi for i < 2k − 1 must be the same for b̄
and d̄ by our assumption, so the only cases we need to check are those that involve elements from each āi.

Assume that E(t̄, s̄) holds, where every element of t̄ and s̄ is either in C, āi for some i < 2k− 1, or b̄ and
some element is from b̄. Since we need an element from each of the āi’s to occur in either t̄ or s̄, there can be
only one element of t̄s̄ that is not from āi for some i < 2k − 1. Therefore no elements of C can be involved,
and, by symmetry, we may assume that the relation is of the form E(e0 . . . ek−1, ek . . . e2k−3bm for some
m < ℓ, where for each j < 2k − 2, ej ∈ āi for some i < 2k − 1. By construction, we must have placed some
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c ∈ C satisfying that E(e0 . . . ek−1, ek . . . e2k−3c), so now we have that E(ek . . . e2k−3c, ek . . . e2k−3bm). By
our type condition, we also have that E(ek . . . e2k−3c, ek . . . e2k−3dm), whereby E(e0 . . . ek−1, ek . . . e2k−3dm).

We have established that whenever an instance of the E relation occurs involving elements of b̄, the same
relation occurs involving the corresponding elements of d̄. By symmetry the reverse is also true, so by
quantifier elimination we have that b̄ ≡Cā0...ā2k−2

d̄, as required. □

Finally, it is natural to wonder about the status of FOPk and IPk in Equivk. Gabriel Conant has provided
us with the following adaptation to the case of stable formulas of [1, Lem. 3.26] and its proof.

Lemma 5.7. Let T be a complete theory. Suppose φ(x̄; ȳ) is stable in T (as a partitioned formula), with
|x̄| = |ȳ| = k. Let z0, . . . , zk be a partition of the 2k free variables in φ(x̄; ȳ). Then θ(z0; . . . ; zk) := φ(x̄, ȳ)
is NFOPk in T .

Proof. We will prove the contrapositive. Assume that θ(z0; . . . ; zk) has FOPk in T . We will show that the
formula φ(x̄; ȳ) is unstable in T .

Just as in the proof of [1, Lem. 3.26], there must be s, t < k+1 such that zs ⊆ x̄ and zt ⊆ ȳ. By switching
x̄ and ȳ if necessary, we may assume without loss of generality that s < t. There are now two cases.

Case 1. t = k.
For i < ω, let τi = 0s−1 ⌢ i ⌢ 0k−s ∈ ωk. Choose a linear order <∗ on ωk ∪ ω such that for j ∈ ω,

τi <∗ j if and only if i < j. By [1, Prop. 2.3], there is an array (aji )i<ω,j≤k such that θ(a0i0 ; . . . ; a
k
ik
) holds

if and only if (i0, . . . , ik−1) <∗ ik. For r ∈ (k − 1) \ {s}, let cr be the subtuple of ar0 corresponding to the
overlap between zr and x̄, and let dr be the subtuple of ar0 corresponding to the overlap between zr and ȳ.
For i < ω, let ḡi be the enumeration of (c0, . . . , cs−1, a

s
i , cs+1, . . . , ck−1,∅) in the order corresponding to x̄,

and let h̄i be the enumeration of (d0, . . . , ds−1,∅, ds+1, . . . , dk−1, a
k
j ) in the order corresponding to ȳ. By

construction, φ(ḡi, h̄j) is the same thing as θ(a00; . . . ; a
s−1
0 ; asi ; a

s+1
0 ; . . . ; ak−1

0 , ak0). Therefore we have that
φ(ḡi, h̄j) holds if and only if τi <∗ j and so if and only if i < j, whereby φ(x̄; ȳ) is unstable in T .

Case 2. t < k.
For i, j < ω, let τi,j = 0s−1 ⌢ i ⌢ 0t−s−1 ⌢ j ⌢ 0k−1 ∈ ωk. Choose a linear order <∗ on

ωk ∪ ω such that for i, j < ω, τi,j <∗ 0 if and only if i < j. By [1, Prop. 2.3], there is an array

(aji )i<ω,j≤k such that θ(a0i0 ; . . . ; a
k
ik
) holds if and only if (i0, . . . , ik−1) <∗ ik. For r ∈ (k + 1) \ {s, t},

let cr be the subtuple of ar0 corresponding to the overlap between zr and x̄, and let dr be the sub-
tuple of ar0 corresponding to the overlap between zr and ȳ. For i < ω, let ḡi be the enumeration of
(c0, . . . , cs−1, a

s
i , cs+1, . . . , ct−1,∅, ct+1, . . . , ck) in the order corresponding to x̄, and let h̄i be the enumer-

ation of (d0, . . . , ds−1,∅, ds+1, . . . , dt−1, a
t
i, dt+1, . . . , dk) in the order corresponding to ȳ. By construction

φ(ḡi, h̄j) is the same thing as θ(a00; . . . ; a
s−1
0 ; asi ; a

s+1
0 , . . . , at−1

0 , atj ; a
t+1
0 , . . . , ak0). Therefore we have that

φ(ḡi, h̄j) holds if and only if τi,j <∗ 0 and so if and only if i < j, whereby φ(x̄; ȳ) is unstable in T . □

Proposition 5.8. Equivk is NFOPk and has IPk−1.

Proof. It is immediate from the fact that E is an equivalence relation on k-tuples that the partitioned formula
E(x̄; ȳ) (with |x̄| = |ȳ| = k) is stable in Equivk. Therefore, by quantifier elimination, Lemma 5.7, and [1,
Thm. 1.5], Equivk is NFOPk.

To see that Equivk has IPk−1 fix a k-tuple ā and an array (bji )i<ω,j<k−1 of distinct elements. For

any X ⊆ ωk−1, we can find a c such that for any (i0, . . . , ik−2) ∈ ωk−1, E(ā; b0i0 . . . b
k−2
ik−2

c) if and only if

(i0, . . . , ik−2) ∈ X (since any such pattern occurs in a model of Equiv0k and the class of models of Equiv0k has
free amalgamation). □

So we’ve established that for every k > 1, the theory Equivk has IPk−1, is NFOPk, has unbounded (2k−2)-
splitting and bounded (2k−1)-splitting, and is 2k-ary but not (2k−1)-ary, giving a simultaneous separation
of NFOPk, bounded k-splitting, and k-arity.

Since Equivk is still 2k-ary, we know that Theorem 3.1 is not entirely optimal for it, at least in some sense.
Theorem 3.1 establishes that if µ is k-ineffable, then µ → (µ)Equivk,n for any n < ω. Often in applications,
merely finding an infinite indiscernible sequence (or an indiscernible sequence of length α for some relatively
small countable ordinal α) rather than an indiscernible sequence of some large cardinality is what really
matters. Since Equivk is 2k-ary, Fact 0.6 applies and implies that ℶ+

2k → ((2ℵ0)+)Equivk,n for any n < ω.
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6. Relationship to other higher-arity notions

In order to compare bounded k-splitting to NFOPk, we’ll first recall some notation and facts from [1,
Sec. 3.2]. Lk = {P0, . . . , Pk, <,<k, R} is a language with P0, . . . , Pk unary relations, < a binary relation, <k

a 2k-ary relation, and R a (k + 1)-ary relation. This language is used in [1] for the indexing structure of a
kind of generalized indiscernible that characterizes FOPk. Tk is the universal Lk-theory that says

• P0, . . . , Pk is a partition,
• < is a linear order satisfying P0 < · · · < Pk,
• if R(x0, . . . , xk) holds, then Pi(xi) holds for each i ≤ k,
• <k only holds on (P0 × · · · × Pk−1)

2 and is a linear order (i.e., a linear order on k-tuples in P0 ×
· · · × Pk−1), and

• if x̄ ≤k ȳ, R(ȳ, w), and w ≤ z, then R(x̄, z).6

Note that Tk imposes no restriction on the relationship between the relation < on P0, . . . , Pk−1 and the
relations <k and R.

In [1, Cor. 3.15], it is shown that the finite models of Tk form a Fräıssé class. We let Hk denote its Fräıssé
limit. Recall that given a structure M , a map f : Hk → M<ω (where M<ω is the set of finite tuples of
elements of M) is an Hk-indexed indiscernible sequence if for any finite tuple a0, . . . , ak−1 ∈ Hk, the sorts of
f(a0), . . . , f(ak−1) and tp(f(a0), . . . , f(ak−1)) only depend on the quantifier-free type of a0 . . . ak−1 in Hk.

Fact 6.1 ([1, Prop. 3.20]). T has FOPk if and only if there is a model M |= T , a formula φ(x0, . . . , xk), and
an Hk-indexed indiscernible sequence f : Hk →M<ω such that for any (h0, . . . , hk) ∈ P0(Hk)×· · ·×Pk(Hk),
we have that f(hi) is of the same sort as xi for each i ≤ k and φ(f(h0), . . . , f(hk)) holds if and only if
H |= R(h0, . . . , hk).

Proposition 6.2. If T has bounded k-splitting, then T is NFOPk.

Proof. We will prove the contrapositive. Assume that T has FOPk. Find φ(x0, . . . , xk), M |= T , and
f : Hk →M<ω as in the statement of Fact 6.1.

Fix ℓ < ω, and let K consider the following finite model of Tk:

• There are elements b0 < c0 < b1 < c2 < · · · < bℓ−1 < cℓ−1 in P0.
• For each i ≤ k with i > 0, there is a single element ai in Pi.
• (b0, a1, . . . , ak−1) <k (b1, a1, . . . , ak−1) <k · · · <k (bℓ−1, a1, . . . , ak−1) <k (cℓ−1, a1, . . . , ak−1) <k

· · · <k (c1, a1, . . . , ak−1) <k (c0, a1, . . . , ak−1).
• For each j < ℓ, R(bj , a1, . . . , ak) and ¬R(cj , a1, . . . , ak) hold.

Note that by construction, we have that for each i < k and j < ℓ, bj and cj have the same quantifier-free
type over b<jc<ja0 . . . âi . . . ak−1.

We may regard K as an Lk-substructure of Hk. Note that since f is an Hk-indexed indiscernible sequence,
we have that for each i < k and j < ℓ, f(bj) ≡f(b<jc<ja0...â...ak−1) f(cj). Since φ(f(a0), . . . , f(ak−1), f(bj))
and ¬φ(f(a0), . . . , f(ak−1), f(cj)) hold, we have that tp(f(a0); . . . ; f(ak−1)/f(b≤jc≤j)) k-splits over
f(b<jc<j). By compactness, we can stretch this to arbitrary length, implying that T has unbounded k-
splitting. □

At the moment, there isn’t a known analog of Fact 6.1 for OP2, which raises the following question.

Question 6.3. Does bounded 2-splitting imply NOP2?

The converse of Proposition 6.2 fails strongly. It turns out that even an NIP theory can have unbounded
k-splitting for every k. Recall that κ(ω) is the smallest ω-Erdős cardinal. By convention, let κ(ω) = ∞ if no
such cardinal exists.

Fact 6.4 (Kaplan, Shelah [7]). (ZFC) There is a countable NIP theory T2<ω such that for every α < κ(ω),
there is a sequence (ai)i<α in a model of T2<ω containing no infinite indiscernible subsequence.

Proposition 6.5. The theory T2<ω from [7] is NIP but does not have bounded k-splitting for any k < ω.

6Note that the assumptions of this imply that w and z are in Pk.
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Stability NIP NFOP2 NIP2 NFOP3 NIP3 · · ·

Bounded
2-splitting

Bounded
3-splitting

· · ·

Unarity Binarity Ternarity · · ·

Figure 2. Relationship between k-arity, bounded k-splitting, NFOPk, and k-dependence.
All implications are strict, and any implication not depicted is known to fail.

Proof. T2<ω is NIP by Fact 6.4. Assume the existence of a k-inaccessible cardinal for each k < ω (which is
a fairly small assumption in the grand scheme of the large cardinal hierarchy). By [4, Lem. 13], the smallest
k-ineffable cardinal is smaller than the smallest ω-Erdős cardinal (if it exists). Therefore if T2<ω has bounded
k-splitting, we arrive at a contradiction given Theorem 3.1 and Fact 6.4. (For the dour large cardinal skeptic,
we give a direct proof of unbounded k-splitting in T2<ω in Appendix B.) □

In particular by [1, Prop 2.8], this theory T has NFOPk for all k > 1, so this establishes that for any ℓ and
k > 1, NFOPk does not imply bounded ℓ-splitting. Of course, the triangle-free random graph demonstrates
that bounded 2-splitting does not even imply NATP (and so does not imply NIP, NTP2, or NSOP1).

This allows us to completely characterize implications between k-arity, bounded k-splitting, NFOPk, and
k-dependence for various k (see Figure 2).

Proposition 6.6. The implications in Figure 2 are all strict and moreover there are no implications between
the classes of theories shown beyond those depicted.

Proof. Strictness of the implications in the top row is established in [1, Sec. 3.4]. Strictness of the implications
in the second row is established later in Proposition 6.10, and the examples of the random k-ary hypergraph
also establish strictness of the bottom row. Proposition 6.5 establishes that there are no implications from
the top row into the lower two rows, aside from the fact that stable theories have bounded k-splitting for
any k. Finally, the existence of a stable theory that is not k-ary for any k (such as ACF0) establishes that
there are no implications from the top two rows into the bottom row. □

As mentioned in [7, Fact 1.10], it was shown by Shelah in [11] that if T is strongly dependent, then
ℶ|T |+(λ) → (λ+)T,n for any λ > |T | and n < ω. This suggests a question.

Question 6.7. Does strong dependence imply bounded k-splitting for some k?

The relationship between bounded 2-splitting and treelessness is also unclear.

Question 6.8. Does treelessness imply bounded k-splitting for k ≥ 2? Does bounded 2-splitting imply
treelessness?

T2<ω in not a counterexample for Question 6.8.

Proposition 6.9. T2<ω is not treeless.

Proof. (See [6, 7] for the relevant notation.) We can embed a copy of the tree ω≤ω2

as (aτ )τ∈ω≤ω2 into

P∅ in a model of T2<ω with its natural successor, limit, and meet structure. Let R ⊆ ω≤ω2

be the subset
consisting of elements whose height is either 0 or a limit ordinal. We may regard R as an L0,P -structure by
interpreting ∧ as the meet, ⊴ as the extension order, <lex as the lexicographic order, and P as the set of
elements of height ω2. By quantifier elimination, we now have that (aτ )τ∈R is a treetop indiscernible which
clearly is not an indiscernible sequence in the lexicographic ordering (even over ∅). Therefore T2<ω is not
treeless. □

There are also higher-arity notions of simplicity. The n-simplicity defined by Kim, Kolesnikov, and Tsuboi
in [8] seems like it might be relevant, as it has to do with higher-arity amalgamation problems, but it is not
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implied by stability. For the other direction, it is relatively easy (as discussed in [8]) to show that the theory
of a random k-ary hypergraph is n-simple for all n, but we also have the following.

Proposition 6.10. For any k > 1, the random k-ary hypergraph has unbounded ℓ-splitting for all ℓ < k.

Proof. Let T be the theory of the random k-ary hypergraph. It is sufficient to show that T has unbounded
(k−1)-splitting by Proposition 2.6. Fix an ordinal α. Fix a (k−1)-partitioned tuple a0; . . . ; ak−2 of distinct
elements and two sequences (bi)i<α and (b′i)i<α such that the only edges are of the form {a0, . . . , ak−2, bi}.
This can be witnessed in a model of T and clearly witnesses unbounded (k − 1)-splitting. □

In hindsight this mismatch doesn’t seem too surprising. The difference between stability and simplicity
has to do with uniqueness. Simplicity allows for amalgamation of sufficiently independent configurations, but
doesn’t guarantee uniqueness of these amalgamations. The analog of 3-amalgamation (i.e., the independence
theorem) for stability is the following: If B |⌣A

C, d |⌣A
B, e |⌣A

C, and d ≡L
A e, then there is a unique type

p(x) ∈ Sx(ABC) extending tp(d/AB)∪ tp(e/AB) that does not fork over A. This raises a natural question.

Question 6.11. Is there a characterization of bounded k-splitting in terms of higher-arity amalgamation
with some kind of uniqueness condition?

One thing to note though with regards to this question is that k-simplicity is of a different character than
k-dependence or the various notions of k-ary stability. k-dependence and k-ary stability become weaker as
one passes to larger k, but k-simplicity becomes stronger (and in particular, all k-simple theories are simple).

7. Some speculation

It is natural to ask is whether more of the machinery of stability theory can be generalized to the context
of theories with bounded k-splitting. Obviously the central notions of stability theory are dividing and
forking, and one of the central results is the symmetry of forking. Stability can easily be shown to satisfy the
following weak symmetry property: For any model M and parameters ā and b̄, if b̄ |⌣

u

M
ā, then tp(ā/Mb̄)

does not split over M .7 We can directly get a similar result.

Proposition 7.1. If T has bounded k-splitting, then for anyM |= T and ā0, . . . , āk−1, b̄, if b̄ |⌣
u

M
ā0 . . . āk−1,

then tp(ā0; . . . ; āk−1/Mb̄) does not k-split over M .

Proof. Assume that b̄ |⌣
u

M
ā0 . . . āk−1 and tp(ā0; . . . ; āk−1/Mb̄) does k-split overM . Let b, b′ ∈ b̄ be elements

that witness that tp(ā0; . . . ; āk−1/Mb̄) k-splits over M . In particular, note that b ≡Mā0...ˆ̄ai...āk−1
b′ for each

i < k.
Fix a global M -coheir p(x̄) such that b̄ |= p↾Mā0 . . . āk−1. Fix an ordinal α. Build a Morley sequence

(b̄j)j∈α∗ (where α∗ is α with the reversed order) in p over Mb̄. Let (bi, b
′
j)j∈α∗ be the elements of b̄j

corresponding to b and b′. We need to argue that for each j ∈ α∗ and each i < k, bj ≡Mā0...ˆ̄ai...āk−1b̄0...b̄j−1
b′j .

For each i < k, since bj ≡Mā0...ˆ̄ai...āk−1
b′j , we have that ā0 . . . ˆ̄ai . . . āk−1bj ≡M ā0 . . . ˆ̄ai . . . āk−1b

′
j , so what

we want follows from the fact that b̄0 . . . b̄k−1 |⌣
u

M
ā0 . . . āk−1bjb

′
j . Since we can do this for any α, T has

unbounded k-splitting. □

As mentioned in the introduction, Shelah’s original definition of forking was in terms of strong splitting.
There are a few ways one might try to adapt this definition to k-splitting, for instance, one could try the
following non-dividing-like condition on a k-partitioned type tp(a0; . . . ; ak−1/B) with some smaller set of
parameters C ⊆ B:

(♡) For every b ∈ B and sequence (bi)i<ω with b0 = b, if (bi)i<ω is Ca0 . . . âi . . . ak−1-indiscernible
for each i < k, then there is a Ca0 . . . ak−1-indiscernible sequence (b′i)i<ω with b′0 = b such that
b<ω ≡Ca0...âi...ak−1

b′<ω for each i < k.

And then one could define an analogous non-forking-like condition in terms of global extensions satisfying
(♡). This kind of higher amalgamation of indiscernible sequences is reminiscent of the k-distality introduced
by Walker in [17], which is itself related to k-dependence. That said, the relationship between the two

7Recall that b̄ |⌣
u
M

ā means that tp(b̄/Mā) is finitely satisfiable in M .
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concepts shouldn’t necessarily be that straightforward, as stable theories and distal theories are in some
sense polar opposites among NIP theories.

A more compelling symmetry result than Proposition 7.1 would be something like this, possibly with
some additional conditions:

If T has bounded k-splitting and tp(a0; . . . ; ak−1/Bc) does not over B, then
tp(c; a1; . . . ; ak−1/Ba0) does not over B.

This would mean that this mystery condition on tp(a0; . . . ; ak−1/Bc) does actually represent some notion
of independence over B for the set {a0, . . . , ak−1, c}. At the moment, however, it is unclear if any advanced
structural theory like this is possible. Moreover, the use of generalized indiscernible sequences in [1] (and
our use of this machinery in Proposition 6.2) suggests that it may be necessary to go beyond the sole
consideration of indiscernible sequences in order to develop such a structure theory.

Appendix A. Treelessness implies NOP2 (and therefore NFOP2)

Here we will give a proof that treeless theories are NOP2 (sharpening [6, Prop. 3.21]) which was worked
out by the author and Gabriel Conant during his visit to the University of Maryland in 2023.

Recall that a theory T has the 2-order property or OP2 if there is a formula φ(x; y, z) and sequences (bi)i∈Q
and (cj)j∈Q such that for any non-decreasing function f : Q → Q, there is an af such that φ(af ; bi, cj) holds
if and only if j ≤ f(i) [12]. By a fairly easy compactness argument, if T has OP2, then it has the same
condition with any linear order in place of Q.

Definition A.1. Given a linear order L, say that a set X ⊆ L2 is downright closed if for any (i, j) ∈ X and
(k, ℓ) ∈ L2 with k ≥ i and ℓ ≤ j, (k, ℓ) ∈ L2.

Note that for any non-increasing function f : L→ L, the set {(i, j) : j ≤ f(i)} is downright closed. Note
also that any intersection of downright closed sets is downright closed.

Lemma A.2. If T has the 2-order property, then for any linear order L, we can find (bi)i∈L and (cj)j∈L

such that for any downright closed set X ⊆ L2, there is an aX such that φ(aX ; bi, cj) holds if and only if
(i, j) ∈ X.

Proof. Let K be the completion of the linear order 2 · L (i.e., L with each point replaced by an increasing
pair of points). We will regard L as a subset of K by identifying each ℓ ∈ L with (1, ℓ) (i.e., the larger of
the two points associated to ℓ).

By compactness, we can find (bi)i∈K and (cj)j∈K such that for any non-decreasing function f : K → K,
there is an af such that φ(af ; bi, cf ) holds if and only if j ≤ f(i).

Fix a downright closed set X ⊆ L2. Define a function f : K → K by fX(i) = sup{j ∈ L : (∃ℓ ∈ L)ℓ ≤
i ∧ (ℓ, j) ∈ X}, where the supremum is computed in K and therefore always exists. Note that fX is a
non-decreasing function by construction.

Claim. For any (i, j) ∈ L2, j ≤ fX(i) if and only if (i, j) ∈ X.
Proof of claim. First assume that (i, j) ∈ X. The clearly j is in the set in the supremum that defines fX(i),
so j ≤ fX(i).

Now assume that j ≤ fX(i). By definition, this implies that j ≤ sup{m ∈ L : (∃ℓ ∈ L)ℓ ≤ i∧ (ℓ,m) ∈ X}.
Since X is downright closed as a subset of L, whenever (ℓ,m) ∈ X for some ℓ ≤ i, we also have that
(i,m) ∈ X. Therefore j ≤ sup{m ∈ L : (i,m) ∈ X}. Since K is not dense below j (by our choice of
embedding of L into K), we must have that j ∈ {m : (i,m) ∈ X}, or in other words that (i, j) ∈ X. □claim

Now by restricting to L as a subset of K, we can take afX for aX for any downright closed X in order to
get the required configuration. □

For the remainder of this proof we will use some notation and terminology from [6]. In particular, we will
denote the lexicographical ordering on ω≤ω by <lex and the extension ordering on ω≤ω by ⊴. Given α and
β in ω≤ω, we will write α ∧ β for the greatest common initial segment of α and β. A family (aη)η∈ωω is a
treetop indiscernible if the family (aη)η∈ω≤ω (where aη = ∅ for η ∈ ω<ω) is a generalized indiscernible family
in the sense that for any tuple η0, . . . , ηk−1 ∈ ωω, tp(aη0

, . . . , aηk−1
) only depends on the quantifier-free type
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of η0, . . . , ηk−1 in the language {⊴,∧, <lex, P}, where P is a unary predicate selecting out the leaves of ω≤ω

(i.e., the elements of height ω).
Consider the sets (Xη)η∈ωω in the proof of [6, Prop. 3.21]:

Xη = {(ν, ξ) ∈ ωω × ωω : η <lex ν <lex ξ and η ∧ ν ◁ ν ∧ ξ}.

Lemma A.3. For each η ∈ ωω, there are downright closed (relative to <lex) sets Yη and Zη such that
Xη = Yη \ Zη.

Proof. Define Yη and Zη as follows:

Yη = {(ν, ξ) ∈ ωω × ωω : η <lex ν and (ν ∧ η ◁ ν ∧ χ or ν ≥lex ξ)}
Zη = {(ν, ξ) ∈ ωω × ωω : ν ≥lex ξ}.

Clearly Xη = Yη \ Zη. Furthermore, Zη is clearly downright close, so we just need to show that Yη is
downright closed. Fix (ν, ξ) ∈ Yη and assume that α ≥lex ν and β ≤lex ξ. Since α ≥lex ν, we still have that
η <lex α. At this point there are two cases.

(1) Assume α ≥lex β. We have immediately that (α, β) ∈ Yη.
(2) Assume α <lex β. It is a basic fact about trees that if ν ≤lex α ≤lex β ≤lex ξ, then ν ∧ ξ ⊴ α ∧ β.

Furthermore, if ν <lex ν ≤lex α ≤lex ξ and ν ∧ ν ◁ ν ∧ ξ, then η ∧ ν = η ∧ α. Therefore we have that

η ∧ α = η ∧ ν ◁ ν ∧ ξ ⊴ α ∧ β,
and so η ∧ α ◁ α ∧ β. □

Proposition A.4. Any treeless theory T does not have the 2-order property.

Proof. We will prove the contrapositive. Let T be a theory with the 2-order property witnessed by the
formula φ(x; y, z). We would like to show that T is ‘treeful’ (i.e., not treeless). With the groundwork of our
two lemmas, the proof is mostly the same as the proof of [6, Prop. 3.21].

Consider (ωω, <lex) as a linear order. By Lemma A.2, we can find (bη)η∈ωω and (cη)η∈ωω such that for
any downright closed X ⊆ ωω × ωω, there is an aX such that φ(aX ; bη, cξ) holds if and only if (η, ξ) ∈ X.

Let (Yη)η∈ωω and (Zη)η∈ωω be as in Lemma A.3. For each η ∈ ωω, let dη = aYη and eη = aZη . Consider
the treetop-indexed family (dηeηbηcη)η∈ωω . Let ψ(x,w; y, z) = φ(x; y, z) ∧ ¬φ(w; y, z). We now have that
for each η, ν, ξ ∈ ωω, ψ(dη, eη; bν , cξ) holds if and only if (ν, ξ) ∈ Xη. Let (e′ηd

′
ηb

′
ηc

′
η)η∈ωω be a treetop

indiscernible locally based on (dηeηbηcη)η∈ωω . By construction, it will still be the case that ψ(e′η, d
′
η; b

′
ν , c

′
ξ)

holds if and only if (ν, ξ) ∈ Xν (i.e., if and only if η <lex ν <lex ξ and η ∧ ν ◁ ν ∧ ξ). Any η0, η1, η2, η3 ∈ ωω

satisfying η0 <lex η1 <lex η2 <lex η3 and η0 ∧ η1 ▷ η1 ∧ η3 and η0 ∧ η2 ◁ η2 ∧ η3 now witnesses that
(e′ηd

′
ηb

′
ηc

′
η)η∈ωω is not an indiscernible sequence, whereby T is treeful. □

Corollary A.5. If T is treeless, then it is NFOP2.

Proof. This is immediate from Proposition A.4 and the fact that NOP2 implies NFOP2. □

Of course it already followed from [6, Prop. 3.21] and [1, Prop. 2.8] that any treeless theory is NFOPk for
any k ≥ 3. Moreover, by [6, Ex. 3.17], we know that the inclusion of treeless theories into NOP2 theories is
strict. As noted in [1], it is open whether the inclusion of NOP2 theories into NFOP2 theories is strict, but
by [1, Prop. 3.25] this is the only implication in Figure 1 that is not known to be strict.

Appendix B. Explicit unbounded k-splitting in the Kaplan-Shelah theory

Here we will remove the large cardinal assumption from Proposition 6.5. See [7, Sec. 3] for the relevant
notation (except for concatenation of sequences, which we will denote by σ ⌢ τ). We will be working with
the specific case of S = 2<ω, although our argument makes it clear that we get unbounded k-splitting in TS
whenever the indexing tree S has height at least k, so even S = (ω,<) would work for our purposes here. It
is likely that there is an even simpler example, but we have not pursued this.

Fix k < ω and a limit ordinal α. We will describe a model M of T ∀
2<ω containing a k-splitting chain

of length α. Let each tree (Pη, <η)η∈2<ω in M be a copy of 2<ω·α+ω (ordered by extension). Everything
important in the construction will be happening in the trees (P0n , <0n)n<k. Note that all of the L2<ω -
structure of M is now defined except for the functions Gη,η⌢i for η ∈ 2<ω and i < 2. The definitions of
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the Gη,η⌢i’s will be clearer if we name some specific elements of the above trees first before defining the
Gη,η⌢i’s. Fix the following names:

• For each i < k, let ai = 0ω·α in P0i .
• Let a′k−1 = 1ω·α in P0k−1 .

• For each i < k − 1 and β < α, let ci,β = 0ω·β ⌢ 1 and let bi,β = ci,β ⌢ 1ω.

Note that suc0i(ai ∧0i bi,β , bi,β) = ci,β for each i < k − 1 and β < α. Now we need to give a complete
definition of the Gη,η⌢i’s, but first we should specify the important values for later in the proof. What
matters is the following:

• G0i,0i+1(ci,β) = bi+1,β for each i < k − 2.
• G0k−2,0k−1(ck−2,β) is ak−1 if β is an even ordinal and is a′k−1 if β is an odd ordinal.

The rest of the definition is just chosen to satisfy the axioms of T ∀
2<ω and avoid spoiling the type equalities

we need to establish k-splitting:

• For each i < k − 2 and β < α, if σ ∈ P0i is a finite extension of ci,β , let G0i,0i+1(σ) = bi+1,β .
• For even β < α, if σ is a finite extension of ck−2,β , let G0k−2,0k−1(σ) = ak−1.
• For odd β < α, if σ is a finite extension of ck−2,β , let G0k−2,0k−1(σ) = a′k−1.
• For any η ∈ 2<ω, i < 2, and σ ∈ Suc(Pη), if Gη,η⌢i(σ) is not already defined, let it be ∅ in Pη⌢i.
• For σ /∈

⋃
η∈2<ω Suc(Pη), Gη,η⌢i(σ) = σ (as required by T ∀

2<ω ).

This completes the description of the model M |= T ∀
2<ω .

Since T2<ω has quantifier elimination and is the model completion of T ∀
2<ω [7, Cor. 3.20], this structure

M uniquely specifies the type of a subset of a model of T2<ω . Our goal is to show that for every even β < α,
tp(a0; . . . ; ak−1/b0,≤β+1) k-splits over b0,<β , specifically as witnessed by the elements b0,β and b0,β+1. The
formula on which they differ is (relatively) straightforward:

f0(x0, y) := G∅,0(suc∅(x0 ∧∅ y, y)),

f1(x0, x1, y) := G0,02(suc0(x1 ∧0 f0(x0, y), f0(x0, y))),

f2(x0, x1, x2, y) := G02,03(suc02(x2 ∧02 f1(x0, x1, y), f1(x0, x1, y))),

...

fk−2(x0, . . . , xk−2, y) := G0k−2,0k−1(suc0k−2(xk−2 ∧0k−2 fk−3(x0, . . . , xk−3, y), fk−3(x0, . . . , xk−3, y))),

φ(x0, . . . , xk−1, y) := (fk−2(x0, . . . , xk−2, y) = xk−1).

A direct calculation now shows that for any β < α, we have

f0(a0, b0,β) = G∅,0(suc∅(a0 ∧∅ b0,β , b0,β)) = G∅,0(c0,β) = b1,β ,

f1(a0, a1, b0,β) = G0,02(suc0(a1 ∧0 b1,β , b1,β)) = G0,02(c1,β) = b2,β ,

...

fk−3(a0, . . . , ak−3, b0,β) = G0k−3,0k−2(suc0k−3(ak−3 ∧0k−3 bk−3,β , bk−3,β)) = G0k−3,0k−2(ck−3,β) = bk−2,β ,

fk−2(a0, . . . , ak−2, b0,β) = · · · = G0k−2,0k−1(ck−2,β) =

{
ak−1, β even

a′k−1, β odd
,

and so in particular φ(a0, . . . , ak−1, b0,β) is true if and only if β is even.
For any β < α, let Mβ be the substructure of M consisting of all elements (in each Pη) of height less than

ω · β.

Lemma B.1. For any i < k, β < α, and γ < α with β ≤ γ, the substructure of M generated by Mβ ∪
{a0, . . . , âi, . . . , ak−1, b0,γ} consists of

• the elements of Mβ,
• the elements a0, . . . , âi, . . . , ak−1,
• for each j < i, 0ω·γ ⌢ 0n and 0ω·γ ⌢ 1 ⌢ 0n for n < ω as elements of P0j (including in particular
cj,γ), and
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• the element bj,γ ∈ P0j for each j ≤ i.

Proof. It is straightforward to check that each of the elements listed in the lemma is generated by the
elements of Mβ ∪ {a0, . . . , âi, . . . , ak−1, b0,γ} and moreover that this list is closed under the functions of
L2<ω . □

Lemma B.2. For any i < k, β < α, and γ, γ′ with β ≤ γ, γ′, the map consisting of the identity on
M ∪ {a0, . . . , âi, . . . , ak−1} and b0,γ 7→ b0,γ′ extends uniquely to an isomorphism of the substructure of M
generated by Mβ ∪ {a0, . . . , âi, . . . , ak−1, b0,γ} to that generated by Mβ ∪ {a0, . . . , âi, . . . , ak−1, b0,γ′}.

In particular, we have that in an ambient model of T2<ω , b0,γ ≡Mβa0...âi...ak−1
b0,γ′ .

Proof. The fact that the map extends to an isomorphism is immediate from Lemma B.1. The final statement
follows from quantifier elimination for T2<ω . □

Applying Lemma B.2 to the specific case of β and β+1 for even β now gives that tp(a0; . . . ; ak−1/b≤β+1)
k-splits over b0,<β . Therefore tp(a0; . . . ; ak−1/b<α) k-splits over b<γ for any γ < α. Since we can do this for
any k < ω and ordinal α, we have that T2<ω has unbounded k-splitting for every k.
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