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Abstract. We give a combinatorial consistency-inconsistency configuration that is equivalent to the failure
of the following form of Kim’s lemma for a given k:

(⋆) For any set of parameters A, formula φ(x, b), and A-bi-invariant types p and q extending tp(b/A), if
φ(x, b) k-divides along p, then it divides along q.

We then give an equivalent technical variant of (⋆) that is non-trivial over arbitrary invariance bases. We also
show that the failure of weaker versions of (⋆) entails the existence of stronger combinatorial configurations,

the strongest of which can be phrased in terms of families of parameters indexed by arbitrary cographs (i.e.,
P4-free graphs).

Finally, we show that if there is an array (bi,j : i, j < ω) of parameters such that {φ(x, bi,j) : (i, j) ∈ C}
is consistent whenever C ⊆ ω2 is a chain (in the product partial order) and k-inconsistent whenever C is
an antichain, then there is a model M , parameter b, and M-coheirs p, q ⊃ tp(b/M) such that q⊗ω is an
M -heir-coheir and φ(x, b) k-divides along p but does not divide along q. In doing so, we also show that this

configuration entails the failure of generic stationary local character under the assumption of GCH.

Introduction

This paper is a direct continuation of [7], which studied the comb tree property or CTP (originally
introduced by Mutchnik as ω-DCTP2 in [11]). The negation of CTP, NCTP, is one of three studied mutual
generalizations of NTP2 and NSOP1, the other two being (the negation of) the antichain tree property
or NATP, introduced by Ahn and Kim in [1], and (the negation of) the bizarre tree property or NBTP,
introduced by Kruckman and Ramsey in [10]. An important aspect of a lot of this work is the behavior of
certain classes of special invariant types, which feature prominently in [7] and in this paper.

Definition 0.1. Recall the following anchors:

• c |⌣
f

A
b means that tp(c/Ab) does not fork over A.

• c |⌣
K

A
b means that tp(c/Ab) does not Kim-fork over A.

• c |⌣
i

A
b means that tp(c/Ab) extends to an A-invariant type.

• c |⌣
u

A
b mean that tp(c/Ab) is finitely satisfiable in A.

Fix an A-invariant type p(x).

• p(x) is strictly A-invariant if whenever b |= p↾Ac, c |⌣
f

A
b.

• p(x) is Kim-strictly A-invariant if whenever b |= p↾Ac, c |⌣
K

A
b.

• p(x) is A-bi-invariant if whenever b |= p↾Ac, c |⌣
i

A
b.

• p(x) is n-strongly A-bi-invariant1 if p⊗n is A-bi-invariant.
• p(x) is strongly A-bi-invariant if it is ω-strongly A-bi-invariant.
• p(x) is an A-heir-coheir if p(x) is an A-coheir and whenever b |= p↾Ac, c |⌣

u

A
b.

• p(x) is an n-strong A-heir-coheir1 if p⊗n is an A-heir-coheir.
• p(x) is a strong A-heir-coheir1 if is an ω-strong A-heir-coheir.
• p(x) is extendibly A-invariant if for any type q(x, ȳ) extending p↾A, p(x) ∪ q(x, ȳ) extends to an
A-invariant type.
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1These definitions are new, although the concept of a strong heir-coheir is implicit in [7, Fact 0.4].
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Generically stable (fim)2

Finitely approximated (fam)2 Definable coheir (dfs)2,3 Definable3

Strong heir-coheir Strongly bi-invariant

Canonical coheir4 n-strong heir-coheir n-strongly bi-invariant

Reliable coheir Heir-coheir Bi-invariant

Reliably invariant Coheir

Semi-reliably invariant Extendibly invariant Strictly invariant

Kim-strictly invariant

over models over models

over models

Figure 1. Some special classes of invariant types.

[7] also introduced a technical strengthening of Kim-strict invariance called reliable invariance and an
intermediate notion of semi-reliable invariance (Definition 2.3), which will play a role in this paper. Figure 1
contains implications between these notions known to the author.

The driving philosophy of [10] (which inspired the work in [7]) is that a reasonable approach to finding a
mutual generalization of NTP2 and NSOP1 is to look at the variants of Kim’s lemma that characterize these
classes of theories:

• T is NTP2 if and only if whenever φ(x, b) divides over a model M , it divides along any Morley
sequence generated by a strictly invariant type extending tp(b/M).

• T is NSOP1 if and only if whenever φ(x, b) divides along some Morley sequence generated by an
invariant type extending tp(b/M), it divides along all Morley sequences generated by invariant types
extending tp(b/M).

Unlike with combinatorial consistency-inconsistency configurations, it is easy to see how to systematically
generalize these statements by slotting in two classes of indiscernible sequences. Since we will be dealing with
many such generalizations in this paper, we introduce systematic nomenclature for them in Definition 2.1.

BTP, CTP, and ATP5 all immediately fall out of failures of certain variants of Kim’s lemma: If T has a
set of parameters A and a formula φ(x, b) that k-divides along some A-invariant type p(y) ⊃ tp(b/A) but not
along some other A-invariant type q(y) ⊃ tp(b/A), then

• if q(y) is Kim-strictly A-invariant, then T has k-BTP [10, Thm. 5.2],

2See [4, 5] for an overview of generically stable and finitely approximated types as well as definable coheirs (also called dfs
types).

3To see that definable types (resp. definable coheirs) are strongly bi-invariant (resp. strong heir-coheirs), note that if p(x) is a
global M -definable type for a model M , then p(x) is an heir of p↾M . Since p⊗n is also M -definable for every n, any such type is

strongly bi-invariant (resp. a strong heir-coheir).
4Canonical coheirs, introduced in [11], are Kim-strictly invariant if Kim-dividing is defined in terms of coheirs rather than

arbitrary invariant types or if the theory in question is NATP [9, Rem. 5.4]. Canonical coheirs should be closely related to the

reliable coheirs of [7], as their constructions are both closely related to the broom lemma, but to the author’s knowledge this has
not been mapped out carefully.

5Listed in increasing order of strength.
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• if A is a model, p(y) is an A-coheir, and q(y) is a canonical A-coheir, then T has k-CTP [11, Thm. 4.9],
• if A is an invariance base, p(y) is extendibly A-invariant, and q(y) is reliably A-invariant, then T has
k-CTP [7, Prop. 2.6],

• if q(y) is A-bi-invariant, then T has k-CTP [7, Prop. 1.7], and
• if q(y) is strongly A-bi-invariant, then T has ATP [7, Prop. 1.7].6

There seem to be many such statements. We prove a three-parameter family of statements of this form in
Theorem 2.6, but to give a simpler example, the proof of [7, Prop. 1.7] can be easily adapted to show the
following.

Definition 0.2. For any n ≤ ω, the set of right-n-combs in 2<ω is the smallest set of subsets of 2<ω containing
the singletons and satisfying that for any right-n-combs A and B, if σ is the greatest common initial segment
of A ∪B, every element of A extends σ⌢0, every element of B extends σ⌢1, and |A| ≤ n, then A ∪B is a
right-n-comb.

A theory T has the (k, n)-comb tree property or (k, n)-CTP if there is a formula φ(x, y) and a tree
(bσ : σ ∈ 2<ω) such that for any right-n-comb C ⊆ 2<ω, {φ(x, bσ) : σ ∈ C} is consistent and for any path
P ⊆ 2<ω, {φ(x, bσ) : σ ∈ P} is k-inconsistent.

Proposition 0.3. If T has a set of parameters A and a formula φ(x, b) such that φ(x, b) k-divides along some
A-invariant type p(y) ⊃ tp(b/A) but does not divide along some n-strongly A-bi-invariant type q(y) ⊃ tp(b/A),
then T has (k, n)-CTP. □

This ostensibly gives a whole hierarchy of combinatorial configurations intermediate between CTP (which
is (k, 1)-CTP in the above terminology) and ATP (which is (k, ω)-CTP in the above terminology), and prima
facie none of these are equivalent.7 (We will not be studying (k, n)-CTP in this paper beyond the observation
of Proposition 0.3, although the first part of Definition 0.2 is morally similar to Definition 1.3.)

Prior to this paper, the only known statement in the opposite direction as Proposition 0.3 (i.e., going
from a combinatorial configuration to a failure of some variant of Kim’s lemma) in the regime of mutual
generalizations of NTP2 and NSOP1 was the following:

• If T has k-CTP, then there is a model M , a formula φ(x, b), an M -coheir p(y) ⊃ tp(b/M), and an
M -heir-coheir q(y) ⊃ tp(b/M) such that φ(x, b) k-divides along p but does not divide along q [7,
Prop. 1.5, 3.1].

In this paper we define two families of combinatorial consistency-inconsistency configurations—namely
(k,m, n)-weaves (Definition 1.4) and k-grids (Definition 5.2)—and prove three new results (although two of
the proofs are essentially identical) in the same direction as [7, Prop. 1.5,3.1] (i.e., the opposite direction of
Proposition 0.3):

• If T has a (k, 1, 1)-weave of depth ω, then there is a model M , a formula φ(x, b), and M -heir-coheirs
p(y), q(y) ⊃ tp(b/M) such that φ(x, b) k-divides along p but does not divide along q (Proposition 3.9).

• If T has an infinite k-grid, then there is a model M , a formula φ(x, b), an M -coheir p(y) ⊃ tp(b/M),
and a strong M -heir-coheir q(y) such that tp(b/M) k-divides along p but does not divide along q
(Theorem 5.10).

• If T has an infinite k-grid, then there is a model M , a formula φ(x, b), a strong M -heir-coheir
p(y) ⊃ tp(b/M), and an M -coheir q(y) such that tp(b/M) k-divides along p but does not divide along
q (Theorem 5.10).

As we show in Theorem 2.6 (the aforementioned three-parameter family of statements), (k,m, n)-weaves
are what naturally arise from an instance of a formula k-dividing along an m-strongly bi-invariant type but
not some n-strongly bi-invariant type (and if m = 1 or n = 1, the type in question can be replaced with a
semi-reliably invariant type),8 so the story for weaves plays out in essentially the same way as the story for

6k-ATP is equivalent to 2-ATP by [2, Lem. 3.20].
7Moreover it should be noted that at the moment there isn’t even a known separation between NBTP and NPM(2), defined

in [3, Def. 6.1]. See Figure 8.
8The rationale for considering (k,m, n)-grids for arbitrary m,n ≤ ω (rather than just m,n ∈ {1, ω}) is that it adds essentially

no extra technical complexity to the proof of Theorem 2.6 (although admittedly it adds some notational and conceptual
complexity to the statement of the result), so it makes sense to record for the sake of posterity. That said, at the moment there
is no known construction that produces strictly n-strong heir-coheirs for n in the interval (1, ω).

3



0
0

0
1

1
0

1
1

00

01

10

11

A

B

A B

0
0

0
1

1
0

1
1

00

01

10

11

Figure 2. A narrowly below B (left) and A widely to the left of B (right).

NCTP and NATP did in [7]: We are able to get an exact characterization of the presence of (k, 1, 1)-weaves
of depth ω in terms of the failure of a certain form of Kim’s lemma and by using (semi-)reliably invariant
types we are able to find a closely related form of Kim’s lemma that is non-vacuous over arbitrary invariance
bases (Theorem 3.10), but our results have the same three shortcomings. Firstly, the proof is entirely uniform
in k, so we are unable to show that these conditions for various k are equivalent. Secondly, the technique
does not seem to generalize at all to building n-strong heir-coheirs for n > 1. Thirdly, there is still no sign of
a technique for building a failure of Kim’s lemma with regards to a (semi-)reliably invariant type and the
precise relationship between (semi-)reliably invariant types and heir-coheirs remains unclear (see Figure 1).

The motivation for the definition of k-grids is merely that they are the simplest configuration the author
has found for which he was able to prove Theorem 5.10, providing a combinatorial upper bound (modulo
set-theoretic assumptions) on generic stationary local character (introduced in [7]) in addition to the above
two mentioned failures of variants of Kim’s lemma involving strong heir-coheirs.

The general picture is partially summarized in Figure 8 at the end of the paper, although a few properties
are missing from the diagram for reasons of space or geometry.

1. Weaves

In this section we will define the main combinatorial configuration of this paper and prove some basic
properties of it.

Definition 1.1. A linear order (L,<) is ordinal-like if it is a model of the common first-order theory of
ordinals

Note that any non-maximal element of an ordinal-like linear order has a successor.

Definition 1.2.

• Given an ordinal-like linear order (L,<) and a set X, we write XL for the collection of functions
from L to X.

• A set A ⊂ L is a topped initial segment (of L) if it is an initial segment of L and L \A has a least
element. Given a topped initial segment A ⊂ L, we write top(A) for the minimum element of L \A.

• We write X<L for the collection of partial functions from topped initial segments of L to X. We
write X≤L for X<L ∪XL.

• Given σ ∈ X<L and a ∈ X, we write σ⌢a for the element of X≤L satisfying that
– dom(σ⌢a) = dom(σ) ∪ {top(dom(σ))},
– for any i ∈ dom(σ), (σ⌢a)(i) = σ(i), and
– (σ⌢a)(top(dom(σ))) = a.

The only set X we will be applying Definition 1.2 to is 22, the set of pairs (i, j) with i, j < 2. In figures
and in the visually motivated terminology in this paper, we will picture (22)L as 2L × 2L, with the first
coordinate horizontal and the second coordinate vertical.

Definition 1.3. Given two sets A,B ⊆ (22)L, we say that
4



0
00
0

0
00
1

0
01
0

00
11

01
00

01
01

0
11
0

0
11
1

1
00
0

1
00
1

1
01
0

1
01
1

1
1
00

1
10
1

1
11
0

1
11
1

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

0
00
0

0
00
1

0
01
0

0
01
1

0
10
0

0
10
1

0
11
0

0
11
1

1
00
0

1
00
1

1
01
0

1
01
1

1
10
0

1
10
1

1
1
1
0

1
1
1
1

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

Figure 3. An up-3-comb (left) and a wide right-2-comb (right).

• A is narrowly below B (or B is narrowly above A) if there is a τ ∈ (22)<L and an i < 2 such that
every element of A extends τ⌢(i, 0) and every element of B extends τ⌢(i, 1).

• A is narrowly to the left of B (or B is narrowly to the right of A) if there is a τ ∈ (22)<L and a
j < 2 such that every element of A extends τ⌢(0, j) and every element of B extends τ⌢(1, j).

• A is widely to the left of B (or B is widely to the right of A) if there is a σ ∈ (22)<L such that every
element of A extends σ⌢(0, 0) or σ⌢(0, 1) and every element of B extends σ⌢(1, 0) or σ⌢(1, 1).

Define the following classes of finite subsets of (22)L inductively:

• The class of finite up-n-combs is the smallest class containing the singletons and satisfying that if A
and B are a finite up-n-combs, |A| ≤ n, and A is narrowly below B, then A∪B is a finite up-n-comb.

• The class of finite right-n-combs is the smallest class containing the singletons and satisfying that if
A and B are finite right-n-combs, |A| ≤ n, and A is narrowly to the left of B, then A ∪B is a finite
right-n-comb.

• The class of finite wide right-n-combs is the smallest class containing the singletons and satisfying
that if A and B are finite right-n-combs, |A| ≤ n, and A is widely to the left of B, then A ∪B is a
finite wide right-n-comb.

A (wide) right-n-comb is a set A satisfying that every finite A0 ⊆ A is a finite (wide) right-n-comb. Up-n-combs
are defined similarly.

Obviously it would make sense to define the notion of A being ‘widely below’ B as well as the notion of a
finite ‘wide up-n-comb,’ but we will not use these.

Definition 1.4. For k < ω, m,n ≤ ω, ordinal-like L, and X ⊆ (22)L, a partial (k,m, n)-weave for φ(x, y) of
depth L (on X) is a family (bσ : σ ∈ X) of parameters in the sort of y such that

• for any finite up-m-comb C ⊆ X, {φ(x, bσ) : σ ∈ C} is k-inconsistent and
• for any finite right-n-comb C ⊆ X, {φ(x, bσ) : σ ∈ C} is consistent.

A partial strong (k,m, n)-weaves for φ(x, y) of depth L (on X) is a partial (k,m, n)-weave for φ(x, y) of
depth L on X satisfying the additional condition (strengthening the second bullet point above) that for any
finite wide right-n-comb C ⊆ X, {φ(x, bσ) : σ ∈ C} is consistent.

A partial (strong) (k,m, n)-weave (bσ : σ ∈ X) for φ(x, y) of depth L is a (strong) (k,m, n)-weave for
φ(x, y) of depth L if X = (22)L.

A (partial, strong) (k,m, n)-weave of depth L is a (partial, strong) (k,m, n)-weave for φ(x, y) of depth L
for some formula φ(x, y).
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Figure 4. The function f in the proof of Proposition 1.5. The image of any wide right-n-
comb under f is a right-n-comb, and the image of any up-m-comb is an up-m-comb.

It might make sense to refer to up-ω-combs as ‘vertical antichains’ and right-ω-combs as ‘horizontal
antichains,’ as the up/down and left/right orientation ceases to be meaningful in that case, but for the sake
of attempting to minimize terminology we will not do this.

One thing to note is that there is an important asymmetry between m and n in Definition 1.4. Specifically,
if (bσ : σ ∈ X) is a partial (k,m, n)-weave and m+ 1 ≥ k, then it is also a partial (k, ω, n)-weave, since any
up-m-comb of size at most m+ 1 is also an up-m′-comb for any m′ ≥ m.

The particular combinatorial consistency-inconsistency configuration we will be considering is that of
(strong) (k,m, n)-weaves of depth ω. There are two reasons we have bothered with the extra complexity of
defining both weaves and strong weaves. The first is that it makes the connection between (2, 1, ω)-weaves
and cographs discussed in Section 4 cleaner. The second is that strong weaves are what naturally arise in
the proof of Theorem 2.6 but (non-strong) weaves are all that we need in the proof of Proposition 3.9 (see
Figure 6). This gives indirectly that a theory T has a (k, 1, 1)-weave of depth ω if and only if it has a strong
(k, 1, 1)-weave of depth ω, but it is worth establishing that this holds for (k,m, n)-weaves in general in an
attempt to keep the zoo of combinatorial consistency-inconsistency configurations as small as possible.

We will write f“[X] for the image of the set X under the function f .

Proposition 1.5. A theory T has a (k,m, n)-weave for φ(x, y) of depth ω if and only if it has a strong
(k,m, n)-weave for φ(x, y) of depth ω.

Proof. Assume that T has a (k,m, n)-weave (bσ : σ ∈ (22)ω) for φ(x, y). Let f : (22)ω → (22)ω be defined by
f(α)(2n) = (1st(α(n)), 0) (where 1st((i, j)) = i) and f(α)(2n+ 1) = α(n). Note that for any A,B ⊆ (22)ω,

• if A is narrowly below B, then f“[A] is narrowly below f“[B] and
• if A is narrowly to the left of B, then f“[A] is widely to the left of f“[B].

It follows from this that the image of any up-m-comb under f is an up-m-comb and that the image of any
right-n-comb under f is a wide right-n-comb, whereby (bf(σ) : σ ∈ (22)ω) is a strong (k,m, n)-weave for
φ(x, y) of depth ω.

The other direction follows immediately from the fact that any strong (k,m, n)-weave is also a (k,m, n)-
weave. □
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Given Proposition 1.5, we will primarily phrase things in terms of weaves, rather than strong weaves
(including Theorem 2.6).

The following definition is a bit more complicated than it needs to be for the purposes of this section
(which is showing the relatively routine fact that a theory T has a strong (k,m, n)-weave for a given formula
φ(x, y) of depth ω if it has strong (k,m, n)-weaves for φ(x, y) of depth d for every finite d), but we will be
using this extra machinery later in Section 3.

Definition 1.6. Given a model M and a (k,m, n)-weave (bσ : σ ∈ X) for φ(x, y) of depth L, the weave
structure associated to M and (bσ : σ ∈ X) is the three-sorted structure (M, (22)≤L, L,B,≺, <, eval, | · |)
where B : (22)L →Mn is a function9 satisfying that B(σ) = bnσ for all σ ∈ (22)L, ≺ is the extension relation
on (22)≤L, < is the order on L, eval : (22)≤L × L → 22 is the partial evaluation function eval(σ, i) = σ(i),
and | · | : (22)<L → L is the (partial) height function |σ| = top(dom(σ)).

A weave structure is a weave structure associated to some model M and some family (bσ : σ ∈ X).

The function eval could be regarded as a literal function to a fourth sort 22 (with constants naming the
four elements of 22) or as a pair of predicates giving the value of the first and second coordinates of eval(σ, i).

Definition 1.7. A (k,m, n)-weave model for φ(x, y) is three-sorted structure (M,W,L,B,≺, <, eval, | · |) that
is a model of the common first-order theory of weave structures associated to models of T with (k,m, n)-weaves
for φ(x, y).

An unbounded (k,m, n)-weave model for φ(x, y) is a (k,m, n)-weave model (M,W,L,B,≺, <, eval, | · |) for
φ(x, y) such that L has no maximal element.

Given a weave model (M,W,L,B,≺, <, eval, | · |), we’ll write W<L for the elements of W in the domain of
| · | and Wtop for the elements of W not in the domain of | · | (i.e., those σ for which eval(σ, i) is defined for
all i ∈ L).

Lemma 1.8. Fix k < ω, m,n ≤ ω, and φ(x, y). If (M,W,L,B,≺, <, eval, | · |) is a (k,m, n)-weave model
for φ(x, y), then there is a canonical identification of W with a subset of (22)L such that (B(σ) : σ ∈W ) is a
partial (k,m, n)-weave for φ(x, y).

Proof. Define ι : W → (22)L by ι(a) = (i 7→ eval(a, i)). The first-order theory of weave structures ensures
that this is an injection, so we will identify W with its image under ι.

It is not difficult to show that for any n and m, the set of m-tuples in W that enumerate right-n-combs
(resp. up-n-combs) is first-order definable and therefore that the consistency and inconsistency conditions in
the definition of partial (k,m, n)-weaves for φ(x, y) is axiomatizable in first-order logic. □

Lemma 1.9. Fix an ordinal-like linear order L, ordinal-like initial segment10 L0 ⊆ L, and function
f : (22)L0 → (22)L satisfying that for each σ ∈ (22)L0 , σ ⊆ f(σ) (i.e., f(σ) extends σ as a function).

For any A ⊆ (22)L0 and n ≤ ω, if A ⊆ (22)L0 is an up-n-comb (resp. right-n-comb), then f“[A] ⊆ (22)L is
an up-n-comb (resp. right-n-comb).

Proof. It is sufficient to check this for finite A. The arguments for right-n-combs and up-n-combs are
essentially the same, so we will just give the argument in the right-n-comb case.

Suppose that A,B ⊆ (22)L0 are finite right-n-combs with |A| ≤ n such that A is narrowly to the left of B.
Fix σ ∈ (22)L0 witnessing this. Suppose that we already know that f“[A] and f“[B] are right-n-combs in
(22)L. Then we have that for some j < 2 every element of f“[A] extends σ⌢(0, j) and every element of f“[B]
extends σ⌢(1, j). Therefore f“[A] is narrowly to the left of f“[B] and we have that f“[A∪B] = f“[A]∪f“[B]
is a right-n-comb in (22)L. □

Lemma 1.10. For any natural k < ω, naturals m,n ≤ ω, formula φ(x, y), ordinal-like L, subset X ⊆ (22)L,
ordinal-like initial segment L0 ⊆ L, subset X0 ⊆ (22)L0 , function f : X0 → X satisfying that for each σ ∈ X0,
σ ⊆ f(σ) (i.e., f(σ) extends σ as a function), and partial (k,m, n)-weave (bσ : σ ∈ X) for φ(x, y) of depth L,
we have that (bf(τ) : τ ∈ X0) is a partial (k,m, n)-weave for φ(x, y) of depth L.

Proof. This is immediate from Lemma 1.9. □

9Strictly speaking this is a partial function whose domain is the definable subset of (22)≤L of elements of maximal height.
10Note that L0 is not required to be a topped initial segment of L.
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Proposition 1.11. For any k < ω, m,n,≤ ω, and formula φ(x, y), if T has a (k,m, n)-weave of depth d for
φ(x, y) for every d < ω, then T has a (k,m, n)-weave for φ(x, y) of depth ω.

Proof. For each d, fix Md |= T and a (k,m, n)-weave (bnσ : σ ∈ (22)d) for φ(x, y) with each bdσ an element of
Md. For each d, let Nd = (Md, (2

2)d, {0, 1, . . . , d− 1}, P(22)d , Bd,≺d, <d, evald, | · |d) be the weave structure

associated to Md and (bdσ : σ ∈ (22)n). Let N = (M,W,L,B,≺, <, eval, | · |) be a non-principal ultraproduct
of the Md’s. By Lemma 1.8, we can identify W with a subset of (22)L in a canonical way and moreover if we
define bσ := B(σ) for σ ∈W , we have that (bσ : σ ∈W ) is a partial (k,m, n)-weave for φ(x, y).

By construction, L has an initial segment isomorphic to ω, which we will identify with ω. By ℵ0-saturation,
we have that for each σ ∈ (22)ω, there is a τ ∈ W ⊆ (22)L extending σ. Let f : (22)ω → W be a function
satisfying that for each σ ∈ (22)ω, σ ⊆ f(σ). By Lemma 1.10, we have that (bf(σ) : σ ∈ (22)ω) is a
(k,m, n)-weave for φ(x, y) of depth ω. □

2. Weaves from the failure of variants of Kim’s lemma

Given the large number of variants of Kim’s lemma we will be considering, we need to introduce some
systematic terminology for them.

Definition 2.1. For any classes X and Y of pairs (A, p) with A a small set of parameters and p an A-invariant
type and any k < ω, we say that T satisfies (k,X ,Y)–Kim’s lemma if for any set of parameters A in a model
of T , formula φ(x, b), and p(y), q(y) ⊃ tp(b/M) with (A, p) ∈ X and (A, q) ∈ Y, if φ(x, b) k-divides along p,
then it divides along q.
T satisfies (ω,X ,Y)–Kim’s lemma if it satisfies (k,X ,Y)–Kim’s lemma for all k < ω.
For k ≤ ω and class Z of small sets of parameters (e.g., models, invariance bases), T satisfies (k,X ,Y)–Kim’s

lemma over Z if it satisfies (k, {(A, p) ∈ X : A ∈ Z}, {(A, p) ∈ Y : A ∈ Z})–Kim’s lemma.

This notion has an easy monotonicity property, which is worth stating explicitly.

Proposition 2.2. If X ⊆ X ′, Y ⊆ Y ′, and k ≤ k′ ≤ ω, then (k′,X ′,Y ′)–Kim’s lemma implies (k,X ,Y)–
Kim’s lemma.

Proof. Suppose that T satisfies (k′,X ′,Y ′)–Kim’s lemma. Fix a set of parameters A, a formula φ(x, b), and
invariant types p(y), q(y) ⊃ tp(b/A). Suppose that (A, p) ∈ X , (A, q) ∈ Y, and φ(x, b) k-divides along q.
Then it also k′-divides along q. Moreover, since (A, q) ∈ X , it is in X ′ as well, so by assumption we have that
φ(x, b) divides along every A-invariant type r with (A, r) ∈ Y ′, and so in particular divides along p. □

Rather than introduce symbolic notation for various classes of invariant types, we will represent these
classes with descriptive phrases. So, for example, the New Kim’s Lemma of [10] is ‘(ω, invariant, Kim-strictly
invariant)–Kim’s lemma over models’ in our nomenclature.

Definition 2.3. A sequence (bi : i < n) is an invariant sequence over A if bi ≡A bj for each i < j < n and

bi |⌣
i

A
b<i for each i < n.

Given a class of A-invariant types I, an A-invariant type p(x) is semi-reliably in I if it is in the largest class
R ⊆ I satisfying that for any p(x0) ∈ R and q(x0, . . . , xn−1) ∈ S(A) extending (p↾A)(x0), if q(x̄) is the type
of an invariant sequence over A, then there is an r(x̄) ∈ R extending p(x0) ∪ · · · ∪ p(xn−1) ∪ q(x0, . . . , xn−1).

If I is the class of all A-invariant types and p(x) is reliably in I, then we say that p(x) is semi-reliably
A-invariant. If I is the class of A-coheirs and p(x) is reliably in I, we say that p(x) a semi-reliable A-coheir.

Fact 2.4 ([7, Thm. 2.14]). Any type over an invariance base A extends to a semi-reliably A-invariant type.
Any type over a model M extends to a semi-reliable M -coheir.

The concept given here in Definition 2.3 is only called ‘semi-reliability’ because the special invariant
types built in [7, Thm. 2.14] actually satisfy a stronger property (called there ‘reliability’), but both in the
argument there and in (most of) the proofs here, only semi-reliability is actually used. If it turns out that
semi-reliability really is the more useful notion, it may make sense to change terminology to keep the names
of the most used concepts short (perhaps by calling semi-reliability ‘reliability’ and reliability something else).

Although it is clear that both semi-reliable invariance and bi-invariance imply Kim-strict invariance, it is
not clear at the moment what other implications hold.
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(bdσ : σ ∈ (22)d)

(bd+1
(0,i)⌢σ : σ ∈ (22)d, i < 2) (bd+1

σ : σ ∈ (22)d+1)

clone using p
clone using q

Figure 5. The construction in the proof of Theorem 2.6. In the first step, every up-m-comb
(with m = 1 for semi-reliably invariant p) of size ℓ ≤ m in the lower clone square realizes
p⊗ℓ over the original upper square. In the second step, every right-n-comb (with n = 1 for
semi-reliably invariant q) of size ℓ ≤ n in the clone rectangle on the left realizes q⊗ℓ over the
original rectangle on the right.

Question 2.5. Is every bi-invariant type semi-reliably invariant? Is Kim-strict invariance equivalent to
semi-reliable invariance?

An analogous question for heir-coheirs was asked in [7, Quest. 2.10].
In the proof of the following proposition (and elsewhere in the paper), when we are dealing with a type

p(x̄) in which the variables x̄ are naturally understood as some family (xi : i ∈ I) indexed by some set I, we
will denote this by p(xi : i ∈ I).

Theorem 2.6. Fix a theory T , k < ω, and m,n ≤ ω.

(1) If T fails to satisfy (k, m-strongly bi-invariant, n-strongly bi-invariant)–Kim’s lemma, then T has a
(k,m, n)-weave of depth ω.

(2) If T fails to satisfy (k, m-strongly bi-invariant, semi-reliably invariant)–Kim’s lemma, then T has a
(k,m, 1)-weave of depth ω.

(3) If T fails to satisfy (k, semi-reliably invariant, n-strongly bi-invariant)–Kim’s lemma, then T has a
(k, 1, n)-weave of depth ω.

(4) If T fails to satisfy (k, semi-reliably invariant, semi-reliably invariant)–Kim’s lemma, then T has a
(k, 1, 1)-weave of depth ω.

Proof of (1). Fix a formula φ(x, b), a set of parameters A, and A-invariant types p(y), q(y) ⊃ tp(b/A) that
witness the failure of (k, m-strongly bi-invariant, n-strongly bi-invariant,)–Kim’s lemma. In particular, p is
m-strongly A-bi-invariant, q is n-strongly A-bi-invariant, φ(x, b) k-divides along p but does divide along q.

We will prove by induction on d that T has a family (bdσ : σ ∈ (22)d) of realizations of tp(b/A) satisfying
the following properties:

(U) For each up-m-comb C ⊆ (22)d, {bdσ : σ ∈ C} is a Morley sequence in p.
(R) For each right-n-comb C ⊆ (22)d, {bdσ : σ ∈ C} is a Morley sequence in q.

This is clearly trivial in the case of d = 0. Suppose that we have a family (bdσ : σ ∈ (22)d) satisfying (R) and

(U) for some d < ω. Let bd+1
(1,1)⌢σ = bdσ for each σ ∈ (22)d. Let ē |= p⊗m↾A ∪ (bd+1

(1,1)⌢σ : σ ∈ (22)d). Since p is

m-strongly A-bi-invariant, we have that (bd+1
(1,1)⌢σ : σ ∈ (22)d) |⌣

i

A
ē. Let r(yσ : σ ∈ (22)d) be an A-invariant

type extending tp((bd+1
(1,1)⌢σ : σ ∈ (22)d)/Aē). Find a family (bd+1

(1,0)⌢σ : σ ∈ (22)d) ≡A (bd+1
(1,1)⌢σ : σ ∈ (22)d)

satisfying that (bd+1
(1,1)⌢σ : σ ∈ (22)d) |= r↾A ∪ (bd+1

(1,0)⌢σ : σ ∈ (22)d).
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Now consider the family (bd+1
(1,i)⌢σ : σ ∈ (22)d, i < 2). We need to verify that this family satisfies (U). Fix

an up-m-comb C ⊆ {(1, i)⌢σ : σ ∈ (22)d, i < 2}. Let Ci = {(1, i)⌢σ : (1, i)⌢σ ∈ C} for both i < 2. It
must be the case that C0 and C1 are both up-m-combs and moreover that |C0| ≤ m. In particular, this

implies that (in some enumeration), (bd+1
σ : σ ∈ C0) |= p⊗|C0|↾A ∪ (bd+1

(1,1)⌢σ : σ ∈ (22)d) and so a fortiori

(bd+1
σ : σ ∈ C0) |= p⊗|C0|↾A ∪ {bd+1

σ : σ ∈ C1}. Therefore (bd+1
σ : σ ∈ C0 ∪ C1) is (in some enumeration) a

Morley sequence in p by the induction hypothesis.
By essentially the same argument (with q in place of p), we can extend (bd+1

(1,i)⌢σ : σ ∈ (22)d, i < 2) to a

family (bd+1
σ : σ ∈ (22)d+1) such that

• (bd+1
(0,i)⌢σ : σ ∈ (22)d, i < 2) ≡A (bd+1

(1,i)⌢σ : σ ∈ (22)d, i < 2) and

• for any right-n-comb C ⊆ {(0, i)⌢σ : σ ∈ (22)d, i < 2}, (bd+1
σ : σ ∈ C) is (in some enumeration) a

Morley sequence in q of length |C| over A ∪ {bd+1
(1,i)⌢σ : σ ∈ (22)d, i < 2}.

The first bullet implies that the full family (bd+1
σ : σ ∈ (22)d+1) satisfies (U) (since an up-n-comb in (22)d+1

must be contained entirely in either {(0, i)⌢σ : σ ∈ (22)d, i < 2} or {(1, i)⌢σ : σ ∈ (22)d, i < 2}). The
second bullet implies that the full family satisfies (R), so we are done.

The condition that φ(x, b) k-divides along p but does not divide along q implies that each of the families
(bdσ : σ ∈ (22)d) is a (k,m, n)-weave for φ(x, y) of depth d. Therefore by Proposition 1.11, T admits a
(k,m, n)-weave of depth ω. □

Proof of (2). Again fix a formula φ(x, b), a set of parameters A, an m-strongly A-bi-invariant type p(y), and
a reliably A-invariant type q(y) such that φ(x, b) k-divides along p but does not divide along q.

The argument here is very similar to the proof of (1), with some additional bookkeeping needed to manage
the semi-reliably invariant type. We will build by induction on d families (bdσ : σ ∈ (22)d) of realizations of
tp(b/A) satisfying the properties (U) and (R) (with n = 1). We will also build a sequence of semi-reliably
A-invariant types qd(yσ : σ ∈ (22)d) with the property that the restriction of qd to each variable yσ is q(yσ).

For d = 0, we just take b0∅ to be b and q0(y∅) to be q(y∅). Suppose we have a family (bdσ : σ ∈ (22)d)

satisfying (U) and (R) as well as a semi-reliably A-invariant type qd(yσ : σ ∈ (22)d) with the property that the
restriction of qd to each variable yσ is q(yσ).

Let bd+1
(1,1)⌢σ = bdσ for each σ ∈ (22)d. Find an A-invariant type r(yσ : σ ∈ (22)d) in the same manner as

in the proof of (1) and similarly build the family (bd+1
(1,i)⌢σ : σ ∈ (22)d, i < 2). Since qd is a semi-reliably

A-invariant type and since the two-element sequence of tuples ((bd+1
(1,1)⌢σ : σ ∈ (22)d), (bd+1

(1,0)⌢σ : σ ∈ (22)d))

is an invariant sequence, we can extend

qd(y(1,1)⌢σ : σ ∈ (22)d) ∪ qd(y(1,0)⌢σ : σ ∈ (22)d) ∪ tp((bd+1
(1,1)⌢σ : σ ∈ (22)d), (bd+1

(1,0)⌢σ : σ ∈ (22)d)/A)

to a semi-reliably A-invariant type qd+1/2(y(1,i)⌢σ : σ ∈ (22)d, i < 2) with the property that the restriction of
qd+1/2 to each y(1,i)⌢σ is q(y(1,i)⌢σ).

Now pick (bd+1
(0,i)⌢σ : σ ∈ (22)d, i < 2) |= qd+1/2↾A ∪ (bd+1

(1,i)⌢σ : σ ∈ (22)d, i < 2) and collect these into

the family (bd+1
σ : σ ∈ (22)d+1). By construction and the induction hypothesis we have that for any wide

right-1-comb C ⊆ (22)d+1, {bd+1
σ : σ ∈ C} is a Morley sequence in q (in some order), so (R) holds. Moreover,

by the same argument as in the proof of (1), we have that (U) holds. Finally, since the two-element sequence

of tuples ((bd+1
(1,i)⌢σ : σ ∈ (22)d, i < 2), (bd+1

(0,i)⌢σ : σ ∈ (22)d, i < 2)) is an invariant sequence, we can extend

qd+1/2(y(1,i)⌢σ : σ ∈ (22)d, i < 2) ∪ qd+1/2(y(0,i)⌢σ : σ ∈ (22)d, i < 2)

∪ tp((bd+1
(1,i)⌢σ : σ ∈ (22)d, i < 2), (bd+1

(0,i)⌢σ : σ ∈ (22)d, i < 2)/A)

to a semi-reliably A-invariant type qd+1(yσ : σ ∈ (22)d+1) with the property that the restriction of qd+1 to
each variable yσ is q(yσ).

The rest of the argument is now the same as in the proof of (1). □

Proof of (3) and (4). The proofs in these two cases are the same as the proof of (2), mutatis mutandis. □

As noted earlier, the proof of Theorem 2.6 actually gives a strong (k,m, n)-weave of depth ω, rather than
just a (k,m, n)-weave of depth ω, but as we saw in Proposition 1.5, these are equivalent anyway.
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It seems likely (using ideas from [11]) that the statement of Theorem 2.6 still holds with n-strong heir-
coheirs in place of n-strongly bi-invariant types and canonical coheirs in place of semi-reliably invariant
types—for instance the failure of (k, canonical coheir, n-strong heir-coheir)–Kim’s lemma over models should
entail the existence of a (k, 1, n)-weave of depth ω—but we have not pursued this here.

In the absence of a positive answer to Question 2.5, it’s worth pointing out the following (admittedly
awkward) corollary of Theorem 2.6.

Corollary 2.7. Fix a complete first-order theory T and k < ω.

• If T fails (k, bi-invariant or semi-reliably invariant, n-strongly bi-invariant)–Kim’s lemma, then T
has a (k, 1, n)-weave of depth ω.

• If T fails (k, m-strongly bi-invariant, bi-invariant or semi-reliably invariant)–Kim’s lemma, then T
has a (k,m, 1)-weave of depth ω.

• If T fails (k, bi-invariant or semi-reliably invariant, bi-invariant or semi-reliably invariant)–Kim’s
lemma, then T has a (k, 1, 1)-weave of depth ω.

Proof. This is immediate from the definition of (k,X ,Y)–Kim’s lemma and Theorem 2.6. □

3. The converse for (k, 1, 1)-weaves

The argument here is similar to arguments in [7], but we will only give a proof analogous to that of [7,
Prop. 3.1] (which works for both countable and uncountable languages but is more technical). For countable
languages, a proof analogous to that of [7, Prop. 1.5] (in which the W and L sorts are kept fixed) is also
possible.

Like the proof of [7, Prop. 3.1], the argument used here is a ‘forcing plus compactness’ argument. In other
words, we have some poset W on which we would like to build a sufficiently generic filter (i.e., one meeting
some family of dense requirements). The issue is that we don’t know that W is κ-closed for any κ > ℵ0, so to
deal with this, we take the poset and our partially built filter (Pi : i ∈ I), bundle them together in a single
first-order structure (with each Pi given its own symbol in the language), and pass to elementary extensions
(expanding both the poset W and the individual Pi’s in the partially built generic filter) in order to make the
intersection of the existing Pi’s non-empty (at which point we also expand the language by adding a new
Pi symbol for a subset of the intersection). In doing so, new requirements show up (since in our case these
correspond to formulas with parameters in the model we are building), but we are able to catch our tail (even
when the size of the language is a singular cardinal), as all of the requirements are finitary in nature. Since
the requirements are moreover axiomatizable in first-order logic, they remain satisfied even when passing to
elementary extensions.

We will take the opportunity to give a general framework for these kinds of arguments. This framework is
very similar to something like (a higher-cardinality generalization of) the Rasiowa-Sikorski lemma or the
Baire category theorem, but we will use category-theoretic (rather than order-theoretic) language for a little
bit of extra flexibility.

Definition 3.1. A category C has <λ-sequential colimits if for any ordinal α < λ, any diagram f : α→ C
has a colimit.

C has λ-sequential colimits if it has <λ+-sequential colimits (i.e., the above holds for any α ≤ λ).

Definition 3.2. Given a small category C and an object a ∈ X, a set X of morphisms in C with domain a is
generic above a if for every morphism f : a→ b, there is an object c ∈ C and a morphism g : b→ c such that
g ◦ f ∈ X.

Note that in the following proposition, F : λ→ C being a sequential-colimit-preserving functor just means
that for any limit ordinal α < λ, F (α) is the colimit of the diagram F ↾α. For something like a category of
models with elementary embeddings, this is the same thing as a continuous elementary chain.

Proposition 3.3. Fix an infinite cardinal λ. Let C be a small category with <λ-sequential colimits. For each
object a ∈ C, let Qa be a set of sets of morphisms that are generic above a with |Qa| ≤ λ. For any object
c ∈ C, there exists a sequential-colimit-preserving functor F : λ→ C such that F (0) = c and for each α < λ
and each X ∈ QF (α), there is a β < λ with α < β such that F (α→ β) ∈ X.
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Proof. For each object a ∈ C, let (Xa
i : i < λ) be an enumeration of Qa (padded with instances of the full

set of objects in C if |Qa| < λ). Fix an enumeration ((γi, δi) : i < λ) of λ2 with the property that for every
(α, β) ∈ λ2, the set {i < λ : (γi, δi) = (α, β)} is cofinal in λ.

Let a0 = c. At stage i < λ, given the object ai, do the following:

• If γi > i, let ai+1 = ai and let fi,i+1 : ai → ai+1 be the identity morphism.

• If γi ≤ i, find some f ∈ X
aγi
δi

and let fi,i+1 = f and ai+1 = cod(f).

For each j < i, let fj,i+1 : aj → ai+1 be fi,i+1 ◦ fj,i.
For limit i, if aj is defined for all j < i and fj,k is defined for all j ≤ k < i, then let ai be the colimit of

the i-indexed diagram given by (aj : j < i) and (fj,k : j ≤ k < i). Let fj,i : aj → ai be the corresponding
canonical maps.

Finally, let F (i) = ai for i < λ. For any i ≤ j < λ, let F (i → j) = fi,j . This is a sequential-colimit-
preserving functor by construction (since F (i) is a colimit for each limit i < λ). We have that for any α < λ and
X ∈ QF (α), there is a β < λ such that F (β) ∈ QF (α) by our choice of the enumeration ((γi, δi) : i < λ). □

Definition 3.4. Given a (k, 1, 1)-weave model (M,W,L,B,≺, <, eval, | · |) and σ ∈W<L, a set X ⊆Wtop is
dense above σ if for every τ ∈W<L with σ ≺ τ , there is a γ ∈ X with τ ≺ γ.

A set X ⊆Wtop is somewhere dense if it is dense above some σ ∈W<L.

Note that X being dense above σ and being somewhere dense are both first-order definable in the structure
(M,W,L, . . . ,X).

Definition 3.5. An augmented (k, 1, 1)-weave model for φ(x, y) (with index set I) is a three-sorted structure
(M,W,L,B,≺, <, eval, | · |, (Pi : i ∈ I)) such that

• (M,W,L,B,≺, <, eval, | · |) is an unbounded (k, 1, 1)-weave model for φ(x, y),
• for each i ∈ I, Pi is a unary predicate selecting out subsets of Wtop, and
• for every finite I0 ⊆ I,

⋂
i∈I0 Pi is somewhere dense.

Note that for a fixed I, the class of augmented (k, 1, 1)-weave models for φ(x, y) with index set I is
axiomatizable in first-order logic.

We will often abbreviate (M,W,L,B,≺, <, eval, | · |, (Pi : i ∈ I)) as (M,W,L, (Pi : i ∈ I))

Definition 3.6. Given augmented (k, 1, 1)-weave models N = (M,W,L,B,≺, <, eval, | · |, (Pi : i ∈ I)) and
N ′ = (M ′,W ′, L′, B′,≺′, <′, eval′, | · |′, (Pj : j ∈ J)) a morphism from N to M is a pair (f0, f1) where f1 is
an injection from I into J and f0 is an elementary embedding of (M,W,L,B,≺, <, eval, | · |, (Pi : i ∈ I))
into (M ′,W ′, L′, B′,≺′, <′, eval′, | · |′, (Pg(i) : i ∈ I)). We will typically write (f0, f1) as f . Composition of
morphisms is componentwise composition: f ◦ g = (f0 ◦ g0, f1 ◦ g1).

We write Weav(T, k, φ) for the category of augmented (k, 1, 1)-weave models for φ(x, y). Given a cardinal
λ, let Weav0λ(T, k, φ) be the full subcategory of Weav(T, k, φ) consisting of augmented (k, 1, 1)-weave models
(M,W,L, (Pi : i ∈ I)) with |M |, |W |, |L|, |I| ≤ λ. In order to make this a small category, let Weavλ(T, k, φ)
be some small full subcategory of Weav0λ(T, k, φ) such that the inclusion functor of Weavλ(T, k, φ) into
Weav0λ(T, k, φ) is essentially surjective.11

When T , k, and φ are clear from context, we will write Weav and Weavλ instead of Weav(T, k, φ) and
Weavλ(T, k, φ).

It is straightforward to verify that Weav has arbitrary sequential colimits and Weavλ has λ-sequential
colimits.

For the remainder of this section, fix a theory T , k < ω, and formula φ(x, y) such that T has (k, 1, 1)-weaves
for φ(x, y) of depth ω. Fix also an infinite cardinal λ ≥ |T |.

Given a formula ψ = ψ(x, c̄) in the language of N = (M,W,L, (Pi : i ∈ I)) with parameters c̄ from N and
given a morphism f : N → N ′ = (M ′,W ′, L′, (Pj : j ∈ J)), let ψf be the formula ψ′(x, f0(c̄)), where ψ

′ is ψ
with each instance of Pi replaced with Pf1(i). Finally, let an N -formula be a formula in the language of N
with parameters from N .

11For a canonical choice, we can take Weavλ(T, k, φ) to be the intersection of Weav0λ(T, k, φ) with the first level of the

cumulative hierarchy Vα such that the inclusion functor is essentially surjective (i.e., the first level at which Weav0λ(T, k, φ) ∩ Vα

contains every isomorphism type of Weav0λ(T, k, φ)). Such an α always exists.
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Lemma 3.7. For any (k, 1, 1)-weave model N = (M,W,L, (Pi : i ∈ I)) in Weavλ, the following sets of
morphisms are generic above N in the category Weavλ (where N ′ is (M ′,W ′, L′, (Pj : i ∈ I ′))).

(1) The set of morphisms f : N → N ′ such that for some σ ∈W ′
<L′ and j ∈ I ′,

• Pg(i) is dense above σ for every i ∈ I,
• N ′ |= Pj ⊆ Pg(i) for every i ∈ I, and
• every τ in Pj extends σ⌢(1, 1).

(2) For any N -formula ψ(x, ȳ) with x a variable of sort W , the set of morphisms f : N → N ′ such that
for some j ∈ I ′, either

• there is a c̄ ∈ N ′ȳ such that Pj ⊆ ψf,g(N ′, c̄) or

• for any morphism f ′ : N ′ → N ′′ in Weav and any c̄ ∈ N ′′, Pg′(j) ∩ ψf
′◦f (N ′′, c̄) is nowhere

dense.

Proof. For (1), fix a morphism f∗ : N → N∗ in Weavλ. Think of N∗ = (M∗,W ∗, L∗, (Pi : i ∈ I∗)) as a four-
sorted structure with I∗ the fourth sort and P coded as a binary relation. By the finite intersection condition
on Pi, we can find a sufficiently saturated elementary extension N∗∗ = (M∗∗,W ∗∗, L∗∗, (Pi : i ∈ I∗∗))
(which is possibly larger than λ) and a j ∈ I∗∗ such that N∗∗ |= Pj ⊆ Pi for every i ∈ I∗. Since Pj is
somewhere dense, we can find a σ ∈ W ∗∗

<L∗∗ such that Pj is dense above σ. Fix an index element ℓ not in
I∗∗. Let Pℓ be the set of elements of Pj extending σ⌢(1, 1). Now consider the augmented (k, 1, 1)-weave
model N† = (M∗∗,W ∗∗, L∗∗, (Pi : i ∈ I∗ ∪ {ℓ})). This has a language of size at most λ, so by downward
Löwenheim-Skolem, we can find an elementary submodel N ′ of N† containing N∗. Let f ′ : N∗ → N ′ be the
inclusion morphism. Then we now have that f ′ ◦ f∗ is in the required set of morphisms. Since we can do this
for any such f∗ : N → N∗, the set is dense above N∗.

For (2), fix a formula ψ(x, ȳ) and a morphism f∗ : N → N∗ = (M∗,W ∗, L∗, (Pi : i ∈ I∗)) in Weavλ. If
there exists a morphism f ′ : N∗ → N ′′ = (M ′′,W ′′, L′′, (Pi : i ∈ I ′′)) in Weav, c̄ ∈ N ′′, and j ∈ I ′′ such

that N ′′ |= Pj ⊆ ψf
′◦f∗

(N ′′, c̄), let N ′ be an elementary substructure of (M ′′,W ′′, L′′, (Pi : i ∈ f ′1“[I
∗] ∪ {j})

containing c̄. Then f ′ ◦ f∗ : N → N ′ is the required morphism.
Otherwise, if no such extension exists, find a morphism f ′ : N∗ → N ′ as in the proof of (1). We need to argue

that the new index ℓ is the required j in the statement of the lemma. (The relevant fact is thatN ′ |= Pℓ ⊆ Pf ′
1(i)

for every i ∈ I∗.) Fix a morphism f† : N ′ → N† = (M†,W †, L†, (Pi : i ∈ I†)). Assume for the sake of

contradiction that Pf†
1 (ℓ)

∩ψf†◦f ′◦f∗
(N†, c̄) is somewhere dense for some c̄ ∈ N†. Fix some σ ∈W †

<L† such that

Pf†
1 (ℓ)

∩ ψf†◦f ′◦f∗
(N†, c̄) is dense above σ. Let r be an index not in I† and let Pr = Pf†

1 (ℓ)
∩ ψf†◦f ′◦f∗

(N†, c̄).

Consider the augmented (k, 1, 1)-weave model (M†,W †, L†, (Pi : i ∈ f†1“[I
′] ∪ {r})). This now satisfies the

extension condition, but we assumed that no such extension exists, which is a contradiction. Therefore

Pf†
1 (ℓ)

∩ ψf†◦f ′◦f∗
(N†, c̄) must be nowhere dense, as required. □

Note that for each N ∈ Weavλ, there are at most λ generic sets listed in (1) and (2) in Lemma 3.7.
The following lemma is essentially the same as [7, Lem. 1.4], but enough details of the formalism are

different that we should state the result precisely and prove it again. We will take the opportunity to make it
slightly more general as well.

Say that a filter F on a topological space (X, τ) is everywhere somewhere dense if every A ∈ F is somewhere
dense (i.e., satisfies that there is a non-empty open set U ⊆ X such that A is dense in U).

Lemma 3.8. Any everywhere somewhere dense filter F on a topological space (X, τ) can be extended to an
everywhere somewhere dense ultrafilter U .
Proof. Fix an everywhere somewhere dense filter F and a set A ⊆ X. We need to show that either F ∪ {A}
generates an everywhere somewhere dense filter or F ∪ {X \A} generates an everywhere somewhere dense
filter.

If F∪{X\A} generates an everywhere somewhere dense filter, then we are done, so assume that F∪{X\A}
does not generate an everywhere somewhere dense filter. Assume for the sake of contradiction that F ∪ {A}
does not generate an everywhere somewhere dense filter. This implies that we can find B,C ∈ F such that
B ∩ (X \ A) is nowhere dense and C ∩ A is nowhere dense. We may assume that B = C. Since B ∈ F ,
there is a non-empty open set U such that B is dense in U . Since B ∩ (X \A) is not dense in U , there is a
non-empty open subset V ⊆ U such that B ∩ (X \A) ∩ V is empty. Since B ∩A is not dense in V , there is a
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U1
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Figure 6. The sets Uj and Rj in the proof of Proposition 3.9. Any sequence (aj : j < cf(λ))
with aj ∈ Uj for each j < cf(λ) is an up-1-comb, and any sequence (bj : j < cf(λ)) with
bj ∈ Rj for each j < cf(λ) is a right-1-comb.

non-empty open subset W ⊆ V such that B ∩A ∩ V is empty. Together these imply that B ∩W is empty,
but this contradicts the fact that B is dense in U and therefore dense in W . Therefore it must be the case
that F ∪ {A} generates an everywhere somewhere dense filter.

Since we can do this for any set A ⊆ X, we have by Zorn’s lemma that we can extend F to an everywhere
somewhere dense ultrafilter. □

[7, Lem. 1.4] is the specific case of Lemma 3.8 applied to 2<ω with the topology generated by sets of the
form {τ ∈ 2<ω : τ ⪰ σ} for σ ∈ 2<ω. In this paper, we will be applying Lemma 3.8 to Wtop with the topology
generated by sets of the form {α ∈Wtop : α ≻ σ} for σ ∈W<L. Note that our previous use of the term dense
is compatible with this topological interpretation. Specifically, A ⊆Wtop is dense above σ if and only if it is
topologically dense in the set {α ∈ Wtop : α ≻ σ} for σ ∈ W<L and A is somewhere dense in the sense of
Definition 3.4 if and only if it is somewhere dense in the standard topological sense.

Proposition 3.9. For any first-order theory T , formula φ(x, y), and k < ω, if T has a (k, 1, 1)-weave for
φ(x, y) of depth ω, then for any cardinal λ ≥ |T |, there is a model M with |M | = λ, a parameter b, and
M -heir-coheirs p(y), q(y) ⊃ tp(b/M) such that φ(x, b) k-divides along p but does not divide along q.

Proof. For each N = (M,W,L, (Pi : i ∈ I)) ∈ Weavλ, let (1)N be the set of morphisms in Lemma 3.7 (1) for
the specific object N . For each N -formula ψ(x, ȳ), let (2)N,ψ be the set of morphisms in Lemma 3.7 (2) for
the specific object N and formula ψ(x, ȳ). Let QN = {(1)N} ∪ {(2)N,ψ : ψ(x, ȳ) an N -formula}.
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By Proposition 3.3 and Lemma 3.7, we can build a sequential-colimit-preserving functor F : λ→ Weavλ
such that for every α < λ and X ∈ QF (α), there is a β < λ with α < β such that F (α → β) ∈ X.
Let Nλ = (Mλ,Wλ, Lλ, (Pi : i ∈ Iλ)) be the colimit in Weav of the diagram F . For each α < λ, let
Nα = (Mα,Wα, Lα, (Pi : i ∈ Iα)) be the image of F (α) under the canonical morphism of F (α) into Nα. Since
this family is isomorphic to the image of F (α) (with each F (α→ β) taken to the inclusion map of Nα into
Nβ), we may assume that for each α < λ, F (α) is Nα and for each α < β < λ, F (α→ β) is the pair (f, g),
where f is the inclusion map of Nα into (Mβ ,W, β, Lβ , (Pi : i ∈ Iα)) and g is the inclusion map of Iα into Iβ .

Let P be the filter on B“[Wλ] ⊆Mλ generated by

• sets of the form {B(x) : Nλ |= Pi(x)} and
• sets of the form {B(x) : x ∈ C} for C ⊆ (Wλ)top satisfying that (Wλ)top \ C is nowhere dense.

Note that since Nλ is an augmented (k, 1, 1)-weave model, P is everywhere somewhere dense (in the sense
of the topology on B“[Wλ] induced by sets of the form {B(x) : x ∈ (Wλ)top, x ≻ b} for b ∈ (Wλ)<Lλ

). In
particular, this implies that P is non-trivial.

Claim 1. P generates a complete type over Nλ.
Proof of claim. Fix an Nλ-formula χ(x) with x a variable in the Mλ sort. Let ψ(x) = χ(B(x)). Find an
α < λ such that ψ is an Nα-formula. By construction, there is a β < λ with α < β such that the inclusion
morphism of Nα into Nβ is in (2)Nα,ψ. This implies that for some j ∈ Iβ , either Nβ |= Pj ⊆ ψ(Nβ), implying
that Nλ satisfies the same and thereby that ψ(Nλ) ∈ P or Pj(Nλ) ∩ ψ(Nλ) is nowhere dense in (Wλ)top. In
the second case, we get immediately that the complement of ψ(Nλ) is in P. Since we can do this for any
such formula, we have that P generates a complete type over Nλ. ◁

Claim 2. If U is an everywhere somewhere dense ultrafilter extending P, then the Mλ-coheir (in the original
language of T ) generated by U is an Mλ-heir-coheir.
Proof of claim. Recall that M is the monster model of the theory T (the theory of Mλ). Let p(y) be the
global type generated by U . Fix some Mλ-formula ψ(y, z̄) and assume that for some b ∈ M, ψ(y, b̄) ∈ p(y).
We need to show that there is a c̄ ∈Mλ such that ψ(y, c̄) ∈ p(y) as well. Find α < λ such that ψ(y, z̄) is an
Nα-formula.

Since U is everywhere somewhere dense, we must have that {a ∈ Wλ : M |= ψ(B(a), b̄)} is somewhere
dense. This means that when we met the condition (2)Nα,ψ(B(y),z̄), we must have satisfied the first bullet
point, implying that there is a c̄ ∈ Nλ such that ψ(Mλ, c̄) is an element of the filter P (and therefore of U as
well). ◁

Since we included the set (1)N in QN , we can build an increasing cofinal sequence (αj : j < cf(λ)) of
ordinals less than λ, a sequence (σj : j < cf(λ)) of elements of (Wλ)<Lλ

, and a sequence (i(j) : j < cf(λ)) of
elements of Iλ satisfying that for every j < cf(λ),

• i(j) ∈ Iαj+1
and σj ∈Wαj+1

,
• Pi is dense above σj for every i ∈ Iαj

,
• Pi(j) ⊆ Pi for every i ∈ Iαj , and
• every τ in Pi(j) extends σj⌢(1, 1).

Let

Uj = {B(x) : x ∈ (Wλ)top, σj⌢(1, 0) ≺ x} , U =
⋃

j<cf(λ)

Uj ,

Rj = {B(x) : x ∈ (Wλ)top, σj⌢(0, 1) ≺ x} , R =
⋃

j<cf(λ)

Rj .

Claim 3. P ∪ {U} and P ∪ {R} both generate everywhere somewhere dense filters.
Proof of claim. To show that P ∪ {U} generates an everywhere somewhere dense filter, it is sufficient
to show that for any C ∈ P, U ∩ C is somewhere dense. We may assume without loss of generality that
C = B“[Pi(Nλ) \D] for some i ∈ Iλ and some nowhere dense D ⊆ (Wλ)top. Find a j such that i ∈ Iαj

. By
construction, we now have that Pi(Nλ) is dense above σj , which implies that Pi(Nλ) \D is dense above σj as
well. This implies that Pi(Nλ) \D is dense above σj⌢(1, 0) and so U ∩ C is somewhere dense.

The proof for P ∪ {R} is the same. ◁
15



By Lemma 3.8, we can find everywhere somewhere dense ultrafilters UU and UR extending P ∪ {U} and
P ∪ {R}, respectively. Let p(y) be the global Nλ-coheir generated by UR and let q(y) be the global Nλ-coheir
generated by UU. By Claim 1, we have that p↾Mλ = q↾Mλ. By Claim 2, the restrictions of p(y) and q(y) to
the language of T are Mλ-heir-coheirs. (This is true in the full language as well, but we will not need this.)

Now we just need to show that φ(x, y) k-divides along p(y) but does not divide along q(y). This is easiest
to see in the full language of Nλ.

Let (bi)i<ω be a Morley sequence (in the monster model of Th(Nλ)) generated by p(y). For any finite
U0 ⊆ U , we have that for some X ∈ UU, U0 is narrowly below X. This implies the following statement by
induction (on n):

For any j0 < j1 < . . . jm−1 < cf(λ) and any a0, . . . , am−1 ∈ U with aℓ ∈ Ujℓ for each ℓ < m,
the set {B−1(a0), . . . , B

−1(am−1), B
−1(bn−1), B

−1(bn−2), . . . , B
−1(b0)} is an up-1-comb, implying in

particular that {φ(x, a0), . . . , φ(x, am−1), φ(x, bn−1), . . . , φ(x, b0)} is k-inconsistent.

This immediately implies that φ(x, y) k-divides along p(y).
The argument that φ(x, y) does not divide along q(y) is essentially the same. □

One thing to note is that like with the Baire category theorem, an advantage of the more abstract framework
given by Proposition 3.3 is that we can easily ensure that the models built in Proposition 3.9 satisfy other
generic conditions without much extra work. For instance, if for a given cardinal κ, λ satisfies that for any
µ < λ, 2|T |+µ+κ < λ, then we can ensure that the model M built in Proposition 3.9 is κ+-saturated. We can
also simultaneously build many different pairs of heir-coheir (p, q) satisfying the conclusion of Proposition 3.9,
although it’s unclear what this might be useful for.

Theorem 3.10. For any complete first-order theory T and k < ω, the following are equivalent.

(1) T satisfies (k, bi-invariant or semi-reliably invariant, bi-invariant or semi-reliably invariant)–Kim’s
lemma.

(2) T satisfies (k, bi-invariant, bi-invariant)–Kim’s lemma.
(3) T satisfies (k, heir-coheir, heir-coheir)–Kim’s lemma over models.
(4) T does not have a (k, 1, 1)-weave of depth ω.
(5) T does not have a strong (k, 1, 1)-weave of depth ω.

Proof. (1) implies (2) and (2) implies (3) by Proposition 2.2. (4) implies (1) by Corollary 2.7. (3) implies (4)
by Proposition 3.9. Finally, (4) and (5) are equivalent by Proposition 1.5. □

(1) in Theorem 3.10 is of course somewhat artificial, but it does have the advantage that it is both
characterized by a forbidden combinatorial configuration and is non-trivial over arbitrary invariance bases,
unlike the characterization of NCTP given in [7].12

Given the artificiality of Theorem 3.10 (1) (and of the characterization of NCTP discussed in Footnote 12),
the following question (which is similar in spirit to Question 2.5) seems reasonable.

Question 3.11. Is there a natural class X of invariant types mutually generalizing bi-invariant types and
semi-reliably invariant types such that (k,X ,X )–Kim’s lemma is equivalent to the conditions in Theorem 3.10?
Is there a similar Y such that NCTP is equivalent to (k, extendibly invariant, Y)–Kim’s lemma?

Using Theorem 3.10 we can of now show that Kim-forking with regards to these special invariant types
entails Kim-dividing with regards to these special invariant types. This does require the use of reliably
invariant types (rather than just semi-reliably invariant types), but these always exist over invariance bases
by [7, Thm. 2.14].

Corollary 3.12. Fix a theory T that does not have a (k, 1, 1)-weave of depth ω for any k < ω. Fix also an
invariance base A and a formula φ(x, b). Suppose that φ(x, b) ⊢

∨
i<n ψi(x, ci) and for each i < n, ψi(x, ci)

divides along an A-bi-invariant type or a semi-reliably A-invariant type. Then φ(x, b) divides along a reliably
A-invariant type.

12Although it should be noted that [7, Thm. 1.8, Prop. 2.6] and the fact that coheirs over models are extendibly invariant

give a similarly artificial (or perhaps even more artificial) characterization of NCTP: A theory has k-CTP if and only if it fails to
satisfy (k, extendibly invariant, bi-invariant or reliably invariant)–Kim’s lemma. Like Theorem 3.10 (1), this version of Kim’s
lemma is non-vacuous over any invariance base.
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Proof. (This proof is essentially identical to the proof of [7, Cor. 2.16].) Let p(y, z0, . . . , zn−1) be a reliably

A-invariant type extending tp(bc0 . . . cn−1/A) (which exists by [7, Thm. 2.14]). Let (djeji : i < n, j < ω)

be a Morley sequence generated by p. Note that (dj : j < ω) and (eji : j < ω) for each i < n are Morley
sequences in reliably A-invariant types. By Theorem 3.10 and the fact that reliably A-invariant types are
semi-reliably A-invariant, {ψi(x, eji ) : j < ω} is inconsistent for each i < n. By the standard argument,

we have that {
∨
i<n ψi(x, e

j
i ) : j < ω} is inconsistent. This implies that {φ(x, dj) : j < ω} is inconsistent,

whereby φ(x, b) divides along p↾y. Therefore φ(x, b) divides along a reliably A-invariant type, as restrictions
of reliably invariant types to subtuples of variables are reliably invariant by definition. □

4. (2, 1, ω)-weaves and cographs

In the specific case of the failure of (2, bi-invariant or semi-reliably invariant, strongly bi-invariant)–Kim’s
lemma (and therefore in the case of the failure of (2, m-strongly bi-invariant, strongly bi-invariant)–Kim’s
lemma for any positive m ≤ ω), we can give a far simpler description of the combinatorial configuration that
arises.

Definition 4.1. Fix two graphs G0 = (V0, E0) and G1 = (V1, E1) with V0 ∩ V1 = ∅.

• The coproduct of G0 and G1 is the graph (V0 ∪ V1, E0 ∪ E1).
• The graph join of G0 and G1 is the graph (V0 ∪ V1, E0 ∪ E1 ∪ {{a, b} : a ∈ V0, b ∈ V1}).

We also define coproducts and graph joins of graphs with not necessarily disjoint underlying sets in the
obvious analogous way. We will denote the coproduct by G0 ⊕G1 and the graph join by G0 ∇G1.

The class of cographs is the smallest class containing the singleton graph and closed under coproducts and
graph joins.

Cographs have the following forbidden subgraph characterization.

Fact 4.2 ([6, Thm. 2]). The cographs are exactly the finite P4-free graphs (i.e., graphs that do not have P4

as an induced subgraph, where P4 is the four-element path graph: • − • − • − •).

Definition 4.3. A theory T admits arbitrary cograph consistency-inconsistency patterns for φ(x, y) if for every
cograph (V,E), there is a family (bv : v ∈ V ) of parameters such that for every V0 ⊆ V , {φ(x, bv) : v ∈ V0} is
consistent if and only if V0 is an anticlique.

Lemma 4.4. For any d < ω, the graph ((22)d, Ed) where Ed = {{σ, τ} ⊆ (22)d : {σ, τ} is an up-1-comb} is
a cograph.

Proof. Let Gd = ((22)d, Ed). G0 is the singleton graph and so is obviously a cograph, and it is immediate
that Gd+1 is isomorphic to (Gd∇Gd)⊕ (Gd∇Gd). □

Lemma 4.5. For any d < ω, any unordered pair {σ, τ} ⊆ (22)d is exclusively either an up-1-comb or a wide
right-1-comb.

Proof. Assume that {σ, τ} is not an up-1-comb. Let ε be the greatest common initial segment of σ and τ .
Since {σ, τ} is not an up-1-comb, it cannot be the case that {σ} is narrowly above or below {τ}. Therefore
we must have that σ extends ε⌢(i, j) and τ extends ε⌢(k, ℓ) with i ̸= k. Regardless of whether i = 0
or i = 1, this implies that {σ} is widely to the left or widely to the right of {τ} and so {σ, τ} is a wide
right-1-comb. □

Lemma 4.6. For any d < ω, C ⊆ (22)d is a wide right-ω-comb if and only if it does not have a subset that
is an up-1-comb of size 2.

Proof. First note that if C ⊆ (22)d is a wide right-ω-comb, then every subset of it is as well, and so by
Lemma 4.5, we have that no subset of C of size 2 is an up-1-comb.

To prove that if C has no subset of size 2 that is an up-1-comb, then C is a wide right-ω-comb, we will
proceed by induction on the size of C. This is immediate for |C| = 1 and for |C| = 2, this follows from
Lemma 4.5. Now suppose that we know this for all A ⊆ (22)d with |A| < n and fix some C with |C| = n.

Let ε be the greatest common initial segment of all elements of C. For each (i, j) ∈ 22, let Ci,j be the set
of elements of C extending ε⌢(i, j). By the choice of ε, it must be the case that at least two of the Ci,j ’s are
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non-empty. If both C0,0 and C0,1 or if both C1,0 and C1,1 are non-empty, then C has a subset of size 2 that
is an up-1-comb, which we have assumed does not happen. Therefore it must be the case that at most one of
C0,0 and C0,1 and at most one of C1,0 and C1,1 is non-empty, which together with the induction hypothesis
implies that C is a wide right-ω-comb. □

Lemma 4.7. For every cograph (V,E), there is a d < ω and an injective function f : V → (22)d such
that for any v0, v1 ∈ V , v0 E v1 if and only if {f(v0), f(v1)} is an up-1-comb and ¬v0 E v1 if and only if
{f(v0), f(v1)} is a wide right-1-comb.

Proof. Fix cographs G0 = (V0, E0) and G1 = (V1, E1) and suppose that we already have such functions
f0 : V0 → (22)d0 and f1 : V1 → (22)d1 . Let d = max{d0, d1}. By embedding (22)di into (22)d, we may assume
that d0 = d1 = d.

To build the required function f for G0 ⊕ G1, just take f(v) = f0(v)⌢(0, 0) for v ∈ V0 and f(v) =
f1(v)⌢(1, 0) for v ∈ V1. And to build the required function f for G0 ∇G1, just take f(v) = f0(v)⌢(0, 0) for
v ∈ V0 and f(v) = f1(v)⌢(0, 1) for v ∈ V1.

By structural induction we are able to do this for all cographs. □

Proposition 4.8. Fix a theory T and a formula φ(x, y). The following are equivalent.

(1) T admits arbitrary cograph consistency-inconsistency patterns for φ(x, y).
(2) T has a (strong) (2, ω, ω)-weave for φ(x, y) of depth ω.
(3) T has a (strong) (2, 1, ω)-weave for φ(x, y) of depth ω.
(4) For every d < ω, T has a (2, ω, ω)-weave for φ(x, y) of depth d.
(5) For every d < ω, T has a (2, 1, ω)-weave for φ(x, y) of depth d.

Proof. The strong and non-strong versions of (2) and (3) are equivalent by Proposition 1.5.
The equivalence of (2)-(5) is immediate from Proposition 1.11 and the discussion after Definition 1.4.
By Lemma 4.7, we have that (2) implies (1). By Lemmas 4.4 and 4.6, we have that (1) implies (4). □

We now get the following corollary, although it can also be proven fairly directly (in a manner analogous
to the proof of Theorem 2.6) without using the machinery of weaves.

Corollary 4.9. If T fails to satisfy (2, bi-invariant or semi-reliably invariant, strongly bi-invariant)–Kim’s
lemma, then T admits arbitrary cograph consistency-inconsistency patterns for some formula.

Proof. This follows immediately from Corollary 2.7 and Proposition 4.8. □

Question 4.10. Is the failure of (2, bi-invariant, strongly bi-invariant)–Kim’s lemma equivalent to admitting
arbitrary cograph consistency-inconsistency patterns for some formula?

The analogous question for semi-reliable invariance seems less tractable given that at the moment there is
no known way to build a failure of a version of Kim’s lemma for (semi-)reliably invariant types (or even just
Kim-strictly invariant types) from a combinatorial configuration.

The following question is suggested by [2, Lem. 3.20] together with the fact that (k, ω, ω)-weaves and
k-ATP trees have a certain family resemblance.

Question 4.11. Are the equivalent conditions in Proposition 4.8 equivalent to admitting a (k, ω, ω)-weave of
depth ω for any k < ω?

5. k-grids

In this section we will describe a forbidden combinatorial consistency-inconsistency configuration that is
(modulo set-theoretic assumptions) an upper bound of two consequences of NATP considered in [7], namely
(k, invariant, strongly bi-invariant)–Kim’s lemma and generic stationary local character.

To define generic stationary local character, we first need to recall that [O]κ is the set of subsets of O of
cardinality κ. A subset C ⊆ [O]κ is unbounded if for every X ∈ [O]κ, there is a Y ∈ C with X ⊆ Y . C ⊆ [O]κ

is closed if for any increasing chain (Xi : i < α) (with α ≤ κ) with Xi ∈ C for each i < α,
⋃
i<αXi ∈ C.

C ⊆ [O]κ is a club if it is closed and unbounded. S ⊆ [O]κ is stationary if for every club C ⊆ [O]κ, S ∩ C is
non-empty.
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Definition 5.1. For any type r(x) and any small M,N |= T with M ⪯ N , we write Ξ(p,M,N) for the
following condition:

For any M -formula φ(x, y) and any d such that φ(x, d) ∈ p(x) and d |⌣
i

M
N , φ(x, d) does not

Kim-divide over N .

T satisfies generic stationary local character if for every λ, there is a κ ≥ λ such that for every κ+-saturated
model O, type p ∈ S(O), and M ⪯ O with |M | ≤ λ, {N ⪯ O : N ⪰M, |N | ≤ κ, Ξ(p,M,N)} is stationary
in [O]κ.

Whenever we talk about chains or antichains in L2 (for a linear order L) it will be in the sense of the
product partial order (i.e., (i, j) ≤ (k, ℓ) if and only if i ≤ k and j ≤ ℓ). Recall that a strict chain in a partial
order is a set C satisfying that for any distinct x, y ∈ C, either x < y or y < x.

Definition 5.2. Given a linear order L and k < ω, a k-grid for φ(x, y) indexed by L is a family (bi,j : i, j ∈ L)
of parameters in the sort of y satisfying that

• for any strict chain C ⊆ L2, {φ(x, bi,j) : (i, j) ∈ C} is consistent and
• for any antichain A ⊆ L2, {φ(x, bi,j) : (i, j) ∈ A} is k-inconsistent.

An infinite k-grid is a k-grid indexed by L for some infinite L.

An easy compactness argument gives that if a theory T has an infinite k-grid for φ(x, y), then it has a
k-grid for φ(x, y) indexed by L′ for every infinite L′. The analogous configuration with k-inconsistent strict
chains and consistent antichains is clearly equivalent. It is possible to show directly that any theory with an
infinite grid for some formula has ATP, but we will get this as a corollary of other results.

Just like with weaves and strong weaves, it is natural to wonder whether the definition of k-grid needs to
be stated in terms of strict chains rather than arbitrary chains. Say that (bi,j : i, j ∈ L) is a strong k-grid if
it is a k-grid with the additional property that for any chain C ⊆ L2, {φ(x, bi,j) : (i, j) ∈ C} is consistent.

Proposition 5.3. A theory T has an infinite k-grid for φ(x, y) if and only if it has an infinite strong k-grid
for φ(x, y).

Proof. Assume that T has an infinite k-grid (bi,j : i, j ∈ L) for φ(x, y). Let M be a model of T containing a
k-grid (bi,j : i, j ∈ R) indexed by (R, <). Consider (M,R, B) be a structure (including the original structure
on M and the field structure on R) with B : R2 → M satisfying B(i, j) = bi,j . Let (N,K,B′) be an
elementary extension of (M,R, B) such that K contains an infinitesimal ε > 0. For each i, j ∈ R, let ci,j =
B′((1−ε)i, (1−ε)j). It is now easy to verify that for any finite chain C ⊆ R2, {((1−ε)i, (1−ε)j) : (i, j) ∈ C}
is a strict chain in K2. Likewise for any finite antichain A ⊆ R2, {((1 − ε)i, (1 − ε)j) : (i, j) ∈ A} is an
antichain in K2. Therefore (ci,j : i, j ∈ R) is an infinite strong k-grid for φ(x, y).

The other direction is immediate. □

By a similar argument, we of course also get that any theory with an infinite k-grid for a formula φ(x, y)
has, for any linear order L, an array (bi,j : i, j ∈ L) satisfying that {φ(x, bi,j) : (i, j) ∈ C} is k-inconsistent
for any chain C ⊆ L2 and {φ(x, bi,j) : (i, j) ∈ A} is consistent for any antichain A.13

One thing to note is that it is relatively easy to embed a (k, ω, ω)-weave into a k-grid.

Proposition 5.4. For any d, there is a map f : (22)d → Z2 with the property that any up-ω-comb C ⊆ (22)d

is an antichain and any right-ω-comb C ⊆ (22)d is a strict chain.

Proof. This is obvious for d = 1. Assume that we have such a map fd : (2
2)d → Z2 for some d < ω. Find an n

large enough that for any σ, τ ∈ (22)d, fd(σ) and fd(τ) + (n,−n) are incomparable in the product order on Z.
Use this to extend fd to a map fd+1/2 : {σ⌢(1, i) : σ ∈ (22)d, i < 2} that still satisfies the required condition.

Now find an m large enough that for any σ, τ ∈ (22) and i, j < 2, fd+1/2(σ⌢(1, i)) < fd+1/2(τ⌢(1, j))+ (n, n).

Use this to extend fd+1/2 to a function fd+1 on all of (22)d+1 satisfying the required condition. □

13We did not discuss this earlier but a similar phenomenon happens with weaves where the presence of a (k,m, n)-weave for
φ(x, y) of depth ω implies (by an argument similar to the proof of Proposition 1.5) that there is a family (bσ : σ ∈ (22)ω) such

that for any up-n-comb C ⊆ (22)ω , {φ(x, bσ) : σ ∈ C} is consistent and for any wide right-m-comb C ⊆ (22)ω , {φ(x, bσ) : σ ∈ C}
is consistent. It is unclear if this is really a meaningful observation but both of these configurations have the property that there
are two equivalent stronger versions (one favoring the consistent sets of parameters and one favoring the k-inconsistent) which
both break the symmetry between consistency and k-inconsistency.
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Figure 7. The function f in Proposition 5.4. The image of any right-ω-comb is a strict
chain and the image of any up-ω-comb is an antichain.

One might hope (as the author did) that the converse of Proposition 5.4 is also true, allowing us to show
that the existence of k-grids is equivalent to the existence of (k, ω, ω)-weaves. Unfortunately this seems
unlikely to follow directly. In the specific case of 2-grids, we can see some evidence that this implication
is unlikely by noting that the graph (L2, {{a, b} ⊆ L2 : a < b ∨ b < a}) contains P4 for any sufficiently
large finite L and so is not a cograph. This isn’t conclusive of course. Given the general shape of these
two conditions, namely the fact that weaves are naturally indexed by a pair of trees and grids are naturally
indexed by a pair of sequences, the treelessness of [8] may be relevant.

Question 5.5. What is the relationship between theories that do not have an infinite k-grid for some k < ω
and theories that do not admit (k, ω, ω)-weaves of depth ω? Do treeless theories with (k, ω, ω)-weaves of depth
ω always have infinite k-grids?

For the remainder of the section, fix a first-order theory T and k < ω such that T has an infinite k-grid.
Fix a k-grid (bi,j : i, j < ω) for some formula φ(x, y).

Fix a model M |= T containing (bi,j : i, j < ω) with |M | ≤ |T |. Expand M to the structure (M,G,<0, <1

, <, (bi,j : i < ω)), where G is a unary predicate selecting out the set {bi,j : i, j < ω}, <0 and <1 are the
linear orders on the coordinates in G, < is the product partial order on G, and bi,j is a constant for the
element bi,j . Let T

′ = Th(M,G,<0, <1, <, (bi,j : i < ω)).
Given any A ⊆ ω2 and n < ω, write A(n) for the set {m < ω : (n,m) ∈ A}. Let F be the filter on ω2

generated by sets A ⊆ ω2 satisfying that {n < ω : A(n) is cofinite} is cofinite. Let U be an ultrafilter on ω2

extending F . Let q(y) be the global coheir generated by U .
Proposition 5.6. φ(x, y) does not divide along q.

Proof. T ′ knows that for any finite strictly <-decreasing sequence (ci : i < n) in G, {φ(x, ci) : i < n} is
consistent. Since q(y) ⊢ bi,j < y for every i, j < ω, we have that any Morley sequence generated by q(y) is
strictly <-decreasing. Therefore φ(x, y) does not divide along q. □

Fix κ ≥ |T | and fix a κ+-saturated model O containing (bi,j : i, j < ω). If κ+ = 2κ, choose O so that
|O| = κ+. Let Elemκ(O) be the set of elementary submodels of O of size at most κ.

Lemma 5.7. For any N ∈ Elemκ(O), formula ψ(y) ∈ q(y) with parameters in N , there is an elementary
extension N ′ ⪰ N in Elemκ(O) such that there is a c ∈ G(N ′) ∩ ψ(N ′) b0,j <1 c for all j < ω.
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Proof. Since ψ(y) ∈ q(y), we know that G(y) ∧ ψ(y) ∈ q(y) as well. This implies that {(i, j) ∈ ω2 : N |=
ψ(bi,j)} ∈ U , so it must be the case that for infinitely many i < ω, there are infinitely many j < ω such
that N∗ |= ψ(bi,j). Fix some such ℓ′ with ℓ′ > ℓ. Let X ⊆ ω be the set of j such that N |= ψ(bℓ′,j). By
compactness and downward Löwenheim-Skolem, we can find an elementary extension N ′ ⪰ N in Elemκ(O)
such that there is a c ∈ N ′ \ N with tp(c/N) finitely satisfiable in {bℓ,j : j ∈ X}. It is immediate that
b0,j <1 c for all j < ω. □

Several different sets of elementary extensions in Elemκ(O) are generic (in the sense of Definition 3.2,
thinking of Elemκ(O) as a posetal category):

• Lemma 5.7 implies that for any N ∈ Elemκ(O) and formula ψ(y) with parameters in N , the set of
elementary extensions N ′ ⪰ N satisfying the conclusion of Lemma 5.7 is generic above N . Specifically,
given an elementary extension N∗ ⪰ N in Elemκ(O) and a formula ψ(y) ∈ q(y) with parameters in
N , we can just apply Lemma 5.7 to N∗ with the same choice of ψ(y) to get an elementary extension
N ′ ⪰ N∗ ⪰ N .

• It is also easy to show that the set of elementary extensions N ′ ⪰ N in Elemκ(O) satisfying that q↾N
is realized in N ′ is generic above N .

• For any a ∈ O, the set of elementary extensions N ′ ⪰ N in Elemκ(O) with a ∈ N ′ is generic above
N (although this will be too many requirements if |O| > κ+).

By a standard argument (which could be thought of as an instance of Proposition 3.3), we can build a
continuous elementary chain (Ni : i < κ+) in Elemκ(O) and a sequence (ei : i < κ+) of elements of O such
that

• for every i < κ+ and formula ψ(y) ∈ q(y) with parameters in Ni, there is an α(i, ψ) < κ+ satisfying
that for some cα(i,ψ) ∈ G(Nα(i,ψ)) ∩ ψ(Nα(i,ψ)), b0,j <1 cα(i,ψ) <1 c for all j < ω,

• for every i < κ+, there is a ε(i) < κ+ such that ei ∈ Nε(i) and ei |= q↾Ni, and
• if |O| = κ+, every a ∈ O is an element of Ni for some i < κ+.

Let C be the set of β < κ+ with the property that

• for any i < β, ψ(y) ∈ q(y) with parameters in Ni, α(i, ψ) < β and
• for any i < β, ε(i) < β.

Since κ+ is a regular cardinal and since |Ni| ≤ κ for all i < β, C is a club in κ+. Note that (ei : i ∈ C) is a
Morley sequence generated by q(y) and so {φ(x, ei) : i ∈ C} is consistent by Proposition 5.6. Let r(x) be
some complete type over O extending {φ(x, ei) : i ∈ C}.

For each β ∈ C, let Hβ be the set of cα(i,ψ) for i < β and ψ(y) ∈ q(y) with parameters in Ni. Note that
by construction, q↾Nβ is finitely satisfiable in Hβ for any β ∈ C.

Let Fβ be the filter on Hβ generated by the set of d ∈ Hβ such that Nβ |= ψ(d) for ψ(y) ∈ q↾Nβ .

Lemma 5.8. Fix a β ∈ C. For every c ∈ Hβ, there is an A ∈ Fβ such that for any d ∈ A, c <0 d and
d <1 c.

Proof. Since c ∈ Hβ , there is a i < ω such that c <0 bi,0. We have that b0,0 <0 y ∧ y <1 c is a formula in
q↾Nβ , so the required A exists by construction. □

Let Vβ be an ultrafilter on Hβ extending Fβ . Let pβ(y) be a global coheir generated by Vβ . Note that by
construction, we have that q↾Nβ = pβ↾Nβ .

Proposition 5.9. For each β ∈ C, φ(x, y) k-divides along pβ.

Proof. Lemma 5.8 implies that for any d |= pβ↾Nβ , we have that c <0 d and d <1 c for all c ∈ Hβ . Therefore
for any Morley sequence (di : i < ω) generated by pβ , we have that di+1 <0 di and di <1 di+1. T

′ knows
that φ(x, y) is k-inconsistent on any set of elements of G satisfying this condition, so φ(x, y) k-divides along
pβ . □

Theorem 5.10. If T has an infinite k-grid for φ(x, y), then

(1) T fails to satisfy (k, coheir, strong heir-coheir)–Kim’s lemma over models,
(2) T fails to satisfy (k, strong heir-coheir, coheir)–Kim’s lemma over models,
(3) T has a (k, ω, ω)-weave of depth ω,
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(4) T fails to satisfy (k, heir-coheir, heir-coheir)–Kim’s lemma over models, and
(5) if GCH holds, then T fails to satisfy generic stationary local character.

Proof. For (1), note that if κ is sufficiently large and the model N0 is chosen to be |T |+-saturated, then q(y)
is a strong heir-coheir. In this case, pβ(y) and q(y) witness the failure of (k, coheir, strong heir-coheir)–Kim’s
lemma over models for any β ∈ C.

(3) and (4) follow from Proposition 1.11, Theorem 3.10, and Proposition 5.4.
For (5), note that if GCH holds, then κ+ = 2κ and so

⋃
i<κNi is all of O. Assume for the sake of

contradiction that X = {N ⪯ O : N ⪰ N0, |N | ≤ κ, Ξ(r,N0, N)} is stationary in [O]κ. {Nβ : β ∈ C} is a
club in [O]κ, so there is a β ∈ C such that Nβ ∈ X. We have that φ(x, eε(β)) ∈ r(x). Since eε(β) |= q↾Nβ ,

we have that eε(β) |⌣
i

N0
Nβ . But we also have that φ(x, eε(β)) k-divides along pβ , which contradicts the fact

that Ξ(r,N0, Nβ). Therefore it must not be the case that X is stationary in [O]κ. Since κ was arbitrary, this
implies that T fails to satisfy generic stationary local character.

(2) follows by repeating the construction given in the section with the orientation of the grid rotated by
90◦ (so that in particular, φ(x, b) k-divides along q but does not divide along pβ for any β ∈ C). □

This could be shown in a direct combinatorial way in the same manner as Proposition 5.4, but at this
point we easily have the following corollary.

Corollary 5.11. If T has an infinite k-grid, then T has ATP.

Proof. This follows from Theorem 5.10 (1) and [7, Prop. 1.7]. □

Infinite k-grids have a certain familial resemblance to ATP, but it is unclear whether they are equivalent.

Question 5.12. If T has ATP, does it follow that T has infinite k-grids?

Although clearly there are weaker hypotheses than GCH that are sufficient for Theorem 5.10 (5), the
apparent need for some set-theoretic assumption may be a sign that Definition 5.1 is not a good definition.
Regardless, the following question is natural.

Question 5.13. Is Theorem 5.10 (5) provable in ZFC?

(1) and (4) together also suggest the following question.

Question 5.14. If T has an infinite k-grid, does it follow that T fails to satisfy (k, heir-coheir, strong
heir-coheir)–Kim’s lemma over models? What about (k, strong heir-coheir, heir-coheir)–Kim’s lemma or (k,
strong heir-coheir, strong heir-coheir)–Kim’s lemma over models?

Given the simple form of Definition 5.2, it seems plausible that one might be able to show that the existence
of a k-grid in a theory T entails the existence of a 2-grid (analogously to how k-ATP implies 2-ATP [2,
Lem. 3.20]).

Question 5.15. If a theory T has a k-grid, does it follow that it also has a 2-grid (possibly for a different
formula)?

What can be said is that both of these conditions imply NPM(2) in the sense of [3, Def. 6.1]. This follows
from the relatively easy fact that PM(2) is equivalent to the existence of a consistency-inconsistency pattern
indexed by the random graph.

Definition 5.16. A theory T admits a random graph consistency-inconsistency pattern (for φ(x, y)) if there
is a random graph (V,E) and a family of parameters (bv : v ∈ V ) such that for any V0 ⊆ V , {φ(x, bv) : v ∈ V0}
is consistent if and only if V0 is an anticlique.

Clearly we have that a random graph consistency-inconsistency pattern for a formula φ(x, y) entails both
the existence of a 2-grid for φ(x, y) and the admission arbitrary cograph consistency-inconsistency patterns
for φ(x, y). It seems unlikely that converses of these implications are true, but at the moment no examples
separating any of the conditions between NBTP and NPM(2) are known (see Figure 8).

Question 5.17. If a theory T has a 2-grid or admits arbitrary cograph consistency-inconsistency patterns
(for a single formula), does it follow that it admits a random graph consistency-inconsistency pattern?
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The only dead end in Figure 8 is (k, strongly bi-invariant, strongly bi-invariant)–Kim’s lemma. Given the
adjacent implications, the following question is reasonable.

Question 5.18. Does PM(2) entail the failure of (2, strongly bi-invariant, strongly bi-invariant)–Kim’s
lemma?

Finally, it should be noted that NSOP4 and binarity14 do not entail the even weaker15 statement of (2,
definable, definable)–Kim’s lemma over models.

Proposition 5.19. For any non-empty set of parameters A in the theory of the triangle-free random graph,
there are two A-definable types p(y0, y1) and q(y0, y1) with p↾A = q↾A such that φ(x, y0, y1) = x E y0 ∧x E y1
2-divides with regards to p but does not divide with regards to q.

Proof. Fix a ∈ A. Let p(y0, y1) be the A-invariant type satisfying that

• p(y0, y1) ⊢ ¬y0 E y1,
• for any b, p(y0, y1) ⊢ y0 E b if and only if b E a, and
• for any b, p(y0, y1) ⊢ y1 E b if and only if b = a.

Let q(y0, y1) be the A-invariant type satisfying that

• q(y0, y1) ⊢ ¬y0 E y1,
• for any b, p(y0, y1) ⊢ ¬y0 E b, and
• for any b, p(y0, y1) ⊢ y1 E b if and only if b = a.

These are both definable types. By quantifier elimination, it is immediate that p↾A = q↾A. A Morley sequence
(a0i , a

1
i : i < ω) generated by p satisfies that for any i < j < ω, a1i E a0j , and so {φ(x, a0i , a1i ) : i < ω} is

2-inconsistent. For any Morley sequence (b0i , b
1
i : i < ω) generated by q, {b0i , b1i : i < ω} is an anticlique, and

so {φ(x, b0i , b1i ) : i < ω} is consistent. □

This leads into one last question. It is relatively straightforward to show that any first-order theory
satisfies (ω, arbitrary, generically stable)–Kim’s lemma (where ‘arbitrary’ means ordinary dividing, extending
Definition 2.1 in the obvious way to include dividing not necessarily along an invariant type). Examples of
definable coheirs that are not finitely approximated (and therefore not generically stable) are hard to come by.
The only known example, described in [5, Sec. 7], lives in a fairly complicated theory T∞

1/2, and characterizing

dividing in this theory seems challenging.

Question 5.20. What can be said about variants of Kim’s lemma involving finitely approximated types or
definable coheirs?

14A theory T is binary if every formula in T is equivalent to a Boolean combination of formulas with two free variables.
15Recall that definable types over models are strongly bi-invariant.
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