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m Modern model theory (as of the 70s): classifying first-order theories
with combinatorial tameness properties.
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Combinatorial tameness in model theory

m Modern model theory (as of the 70s): classifying first-order theories
with combinatorial tameness properties.

m Started with Shelah’s work generalizing Morley's theorem to
uncountable languages. Ballooned into a large body of work called
stability theory. Later extended and generalized under the title of
neostability theory.
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Examples:
i} (R, +, -, <, exp)
- : (@ +,<)
(N, +,<)
p-adic numbers
2 g Alg. closed valued fields
’ ’ Field of transseries
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Examples:

suo3eiq

Generic vector space with
bilinear form over NIP or
NTP; field (R, Qp, etc.)

NIP

Generic linear order
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A formula ¢(x, y) has the k-tree property if there is a tree (¢, )yew<w Of
parameters such that

m paths are consistent: {((x, can) 1 N < w} for o € w*,

m siblings are k-inconsistent: {((x, c;—~p) 1 N < w}.
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Simplicity: The tree property in model theory

A formula ¢(x,y) has the k-tree property if there is a tree (¢ )yep<w Of
parameters such that

m paths are consistent: {((x, can) 1 N < w} for o € w*,

m siblings are k-inconsistent: {¢(x, c;—~pn) : N < w}.

Example ¢(x, a, b) = (a < x < b) with ¢ = ab in (Q, <):

\
\ J/
dg bz

James E Hanson (ISU) Special coheirs and model-theoretic trees June 3, 2025 4 /20



Simplicity: The tree property in model theory

A formula ¢(x,y) has the k-tree property if there is a tree (¢ )yep<w Of
parameters such that

m paths are consistent: {((x, can) 1 N < w} for o € w*,

m siblings are k-inconsistent: {¢(x, c;—~pn) : N < w}.

Example ¢(x, a, b) = (a < x < b) with ¢ = ab in (Q, <):

ap bO a by
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A formula ¢(x, y) has the k-tree property if there is a tree (¢, )yew<w Of
parameters such that

m paths are consistent: {((x, can) 1 N < w} for o € w*,

Example ¢(x, a,b) = (a < x < b) with ¢ = ab in (Q, <):

( v
L\ ]t 7 A A A
dgy 2-inconsistent bz
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Simplicity: The tree property in model theory

A formula ¢(x,y) has the k-tree property if there is a tree (¢ )yep<w Of
parameters such that

m paths are consistent: {((x, can) 1 N < w} for o € w*,

m siblings are k-inconsistent: {¢(x, c;—~pn) : N < w}.

Example ¢(x, a, b) = (a < x < b) with ¢ = ab in (Q, <):

400 boo aio bio ax b
dg

bz
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Siblings are 2-inconsistent

dy by
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Siblings are 2-inconsistent

4o bo ai b1 4, by
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dy by
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Mutchnik established that the following definition is equivalent to the
standard definition of SOP; in his proof that NSOP; = NSOP,.
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SOP;: The tree property of the first kind

Mutchnik established that the following definition is equivalent to the
standard definition of SOP; in his proof that NSOP; = NSOP».

A formula ¢(x, ¢) has the k—tree property of the first kind or k-SOP;
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SOP;: The tree property of the first kind

Mutchnik established that the following definition is equivalent to the
standard definition of SOP; in his proof that NSOP; = NSOP».

A formula ¢(x, ¢) has the k—tree property of the first kind or k-SOP; if
there is a tree (¢ )ycw<w Of parameters such that
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SOP;: The tree property of the first kind

Mutchnik established that the following definition is equivalent to the
standard definition of SOP; in his proof that NSOP; = NSOP».

A formula ¢(x, ¢) has the k—tree property of the first kind or k-SOP; if
there is a tree (¢ )ycw<w Of parameters such that

m paths are consistent: {p(x, coin) 1 N < w} for o € wW¥,
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SOP;: The tree property of the first kind

Mutchnik established that the following definition is equivalent to the
standard definition of SOP; in his proof that NSOP; = NSOP».

A formula ¢(x, ¢) has the k—tree property of the first kind or k-SOP; if
there is a tree (¢ )ycw<w Of parameters such that

m paths are consistent: {p(x, coin) 1 N < w} for o € wW¥,

m for any “right-comb” X C w<¥, {¢(x,¢,) : 0 € X} is k-inconsistent.
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SOP;: The tree property of the first kind

Mutchnik established that the following definition is equivalent to the
standard definition of SOP; in his proof that NSOP; = NSOP».

A formula ¢(x, ¢) has the k—tree property of the first kind or k-SOP; if
there is a tree (¢ )ycw<w Of parameters such that

m paths are consistent: {p(x, coin) 1 N < w} for o € wW¥,
m for any “right-comb” X C w<¥, {¢(x,¢,) : 0 € X} is k-inconsistent.

(Note that this is a non-standard definition.)
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Given a structure M we can use an ultrafilter &/ on M (an M-coheir) to
‘generate’ a sequence of new elements (in the monster model).
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Given a structure M we can use an ultrafilter &/ on M (an M-coheir) to
‘generate’ a sequence of new elements (in the monster model).

Example (Q, <) with ultrafilter concentrating at +oo:

Q U

Monster

_ Special coheirs and model-theoretic trees June 3, 2025 10 / 20



Given a structure M we can use an ultrafilter &/ on M (an M-coheir) to
‘generate’ a sequence of new elements (in the monster model).

Example (Q, <) with ultrafilter concentrating at +oo:

Q U ao

Monster
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Given a structure M we can use an ultrafilter &/ on M (an M-coheir) to
‘generate’ a sequence of new elements (in the monster model).

Example (Q, <) with ultrafilter concentrating at +oo:

@ U ai do

Monster
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Given a structure M we can use an ultrafilter &/ on M (an M-coheir) to
‘generate’ a sequence of new elements (in the monster model).

Example (Q, <) with ultrafilter concentrating at +oo:

@ U ai do

Monster
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Coheirs

Given a structure M we can use an ultrafilter & on M (an M-coheir) to
‘generate’ a sequence of new elements (in the monster model).

Example (Q, <) with ultrafilter concentrating at +oc:

Q U ag

Monster

B aj;1 is what U/ ‘looks like' to Q and ag, ..., aj.
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Coheirs

Given a structure M we can use an ultrafilter & on M (an M-coheir) to
‘generate’ a sequence of new elements (in the monster model).

Example (Q, <) with ultrafilter concentrating at +oc:

Q U ag

Monster

B aj;1 is what U/ ‘looks like' to Q and ag, ..., aj.

m a;1 realizesU over QU {ap,...,a;}.
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Coheirs

Given a structure M we can use an ultrafilter & on M (an M-coheir) to
‘generate’ a sequence of new elements (in the monster model).

Example (Q, <) with ultrafilter concentrating at +oc:

a
Monster Q Z:{ 0
B aj;1 is what U/ ‘looks like' to Q and ag, ..., aj.
m a;1 realizesU over QU {ap,...,a;}.
m ag, a1, ... is the Morley sequence generated by U.
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Given a coheir U over a model M, a formula ¢(x,y) k-divides along U if
whenever by, by, ... is a Morley sequence generated by I/,
{p(x, bi) : i < w} is k-inconsistent.
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Given a coheir U over a model M, a formula ¢(x,y) k-divides along U if
whenever by, by, ... is a Morley sequence generated by I/,
{p(x, bi) : i < w} is k-inconsistent.

T has SOP; if and only if there is a model M, two coheirs U and V
(extending the same type), and a formula ¢(x, y) such that ¢(x,y) divides
along U but not along V.
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Two non-trivial coheirs of the 2-type living in the cut at 7 over Q:
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Two non-trivial coheirs of the 2-type living in the cut at 7 over Q:

® Upinch corresponding to two elements ‘pinching’ the cut (coming in
from both sides).
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Coheir witnesses of SOP; in (Q, <)

Two non-trivial coheirs of the 2-type living in the cut at 7 over Q:
® Upinch corresponding to two elements ‘pinching’ the cut (coming in
from both sides).

B Upelow corresponding to two elements sliding towards the cut from
below.
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Coheir witnesses of SOP; in (Q, <)

Two non-trivial coheirs of the 2-type living in the cut at 7 over Q:

® Upinch corresponding to two elements ‘pinching’ the cut (coming in
from both sides).

B Upelow corresponding to two elements sliding towards the cut from
below.

The formula (a < x < b) divides along Upejow but not along Upinch.

Q< T<Q
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Coheir witnesses of SOP; in (Q, <)

Two non-trivial coheirs of the 2-type living in the cut at 7 over Q:

® Upinch corresponding to two elements ‘pinching’ the cut (coming in
from both sides).

B Upelow corresponding to two elements sliding towards the cut from
below.

The formula (a < x < b) divides along Upejow but not along Upinch.

Q<m ap bg T<Q
é >
2 4
Morley sequence generated by Upinch
Consistent
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Coheir witnesses of SOP; in (Q, <)

Two non-trivial coheirs of the 2-type living in the cut at 7 over Q:

® Upinch corresponding to two elements ‘pinching’ the cut (coming in
from both sides).

B Upelow corresponding to two elements sliding towards the cut from
below.

The formula (a < x < b) divides along Upejow but not along Upinch.

Q<m ao bo T<Q
é °
X 7

Morley sequence generated by Upelow
2-inconsistent
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Ubelow has a special property. The Morley sequence it generates

Q< ag bg <@
: ‘ x :
¢ 4

Generated by Upelow
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Ubelow has a special property. The Morley sequence it generates

Q< ag bg <@
: ‘ x :
¢ 4

Generated by Upelow

is ‘the same’ as the Morley sequence generated by a different coheir
backwards:

Q<m do o T<Q
— '

Generated by Uspove
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Heir-coheirs

Ubelow has a special property. The Morley sequence it generates

Q<7 ap by T<Q
é 3
X 7

Generated by Upelow

is ‘the same’ as the Morley sequence generated by a different coheir
backwards:

Q< do (a)) T™<Q
% r
é
h¢

N
4
Generated by Uapove

This is non-trivial. Upinch does not have this property.
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TP, in terms of heir-coheirs

U is an M-heir-coheir if whenever b realizes U over M U A, there is an
M-coheir V such that A realizes V over M U b.
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TP, in terms of heir-coheirs

U is an M-heir-coheir if whenever b realizes U over M U A, there is an
M-coheir V such that A realizes V over M U b.

A formula ¢(x, b) k-divides over M if there is a sequence (b;)i<, of
realizations of the type of b over M such that {¢(x, b;) : i < w} is
k-inconsistent.

James E Hanson (ISU) Special coheirs and model-theoretic trees June 3, 2025 14 /20



TP, in terms of heir-coheirs

U is an M-heir-coheir if whenever b realizes U over M U A, there is an

M-coheir V such that A realizes V over M U b.

A formula ¢(x, b) k-divides over M if there is a sequence (b;)i<, of
realizations of the type of b over M such that {¢(x, b;) : i < w} is
k-inconsistent.

Theorem (Chernikov, Kaplan)

T has TPy if and only if there is a model M, a formula ¢(x, b), and an
M-heir-coheir U extending the type of b over M such that ¢(x, b) divides
over M but does not divide along /.

DLO (theory of (Q, <)) is NTPa.
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N?TP via a new Kim's lemma?

Dividing lines tend to have three characterizations: Combinatorial, some
kind of local character, and a version of Kim's lemma.

Kruckman and Ramsey suggested formulating N?TP via a mutual
generalization of the Kim's lemmas for NSOP; and NTP5.

James E Hanson (ISU) Special coheirs and model-theoretic trees June 3, 2025 15 / 20



N?TP via a new Kim's lemma?

Dividing lines tend to have three characterizations: Combinatorial, some
kind of local character, and a version of Kim's lemma.
Kruckman and Ramsey suggested formulating N?TP via a mutual
generalization of the Kim's lemmas for NSOP; and NTP5.
m NSOP;: If p(x, b) divides along some coheir, then it divides along
every coheir.
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N?TP via a new Kim's lemma?

Dividing lines tend to have three characterizations: Combinatorial, some
kind of local character, and a version of Kim's lemma.
Kruckman and Ramsey suggested formulating N?TP via a mutual
generalization of the Kim's lemmas for NSOP; and NTP5.
m NSOP;: If p(x, b) divides along some coheir, then it divides along
every coheir.
m INTP2: If o(x, b) divides, then it divides along every heir-coheir.
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N?TP via a new Kim's lemma?

Dividing lines tend to have three characterizations: Combinatorial, some
kind of local character, and a version of Kim's lemma.

Kruckman and Ramsey suggested formulating N?TP via a mutual
generalization of the Kim's lemmas for NSOP; and NTP5.

m NSOP;: If p(x, b) divides along some coheir, then it divides along
every coheir.

m INTP2: If o(x, b) divides, then it divides along every heir-coheir.

Lead them to the bizarre tree property or BTP (uses a weakening of
heir-coheirdom).
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N?TP via a new Kim's lemma?

Dividing lines tend to have three characterizations: Combinatorial, some
kind of local character, and a version of Kim's lemma.

Kruckman and Ramsey suggested formulating N?TP via a mutual
generalization of the Kim's lemmas for NSOP; and NTP5.

m NSOP;: If p(x, b) divides along some coheir, then it divides along
every coheir.

m INTP2: If o(x, b) divides, then it divides along every heir-coheir.

Lead them to the bizarre tree property or BTP (uses a weakening of
heir-coheirdom).

Their philosophy also suggests the following:
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N?TP via a new Kim's lemma?

Dividing lines tend to have three characterizations: Combinatorial, some
kind of local character, and a version of Kim's lemma.

Kruckman and Ramsey suggested formulating N?TP via a mutual
generalization of the Kim's lemmas for NSOP; and NTP5.

m NSOP;: If p(x, b) divides along some coheir, then it divides along
every coheir.

m INTP2: If o(x, b) divides, then it divides along every heir-coheir.

Lead them to the bizarre tree property or BTP (uses a weakening of
heir-coheirdom).

Their philosophy also suggests the following:

? N?TP: If p(x, b) divides along some coheir, then it divides along
every heir-coheir?
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A formula ¢(x, ¢) has the k-comb tree property or k-CTP if there is a tree
(¢o)ocw<w of parameters such that
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The comb tree property

A formula ¢(x, ¢) has the k-comb tree property or k-CTP if there is a tree
(¢o)ocw<w of parameters such that

m paths are k-inconsistent: {¢(x, cyin) 1 n < w} for a € w®,
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The comb tree property

A formula ¢(x, ¢) has the k-comb tree property or k-CTP if there is a tree
(¢o)ocw<w of parameters such that

m paths are k-inconsistent: {¢(x, cyin) 1 n < w} for a € w®,
m for any “right-comb” X C w<¥, {p(x,¢,) : 0 € X} is consistent.

(Note the switcheroo.)
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The comb tree property

A formula ¢(x, ¢) has the k-comb tree property or k-CTP if there is a tree
(¢o)ocw<w of parameters such that

m paths are k-inconsistent: {¢(x, cyin) 1 n < w} for a € w®,

m for any “right-comb” X C w<¥, {p(x,¢,) : 0 € X} is consistent.
(Note the switcheroo.)

DLO doesn’t have CTP.
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Characterization of CTP

Theorem (H.)

A theory has k-CTP if and only if there is a model M, a formula ¢(x, b),
and an M-heir-coheir U and an M-coheir V extending the type of b over
M such that ¢(x, b) k-divides along V but does not divide along .
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Characterization of CTP

Theorem (H.)

A theory has k-CTP if and only if there is a model M, a formula ¢(x, b),
and an M-heir-coheir U and an M-coheir V extending the type of b over
M such that ¢(x, b) k-divides along V but does not divide along .

The proof is entirely uniform in k, which leaves the following question.

Question
Does k-CTP imply 2-CTP?

James E Hanson (ISU) Special coheirs and model-theoretic trees June 3, 2025 18 /20



Characterization of CTP

Theorem (H.)

A theory has k-CTP if and only if there is a model M, a formula ¢(x, b),
and an M-heir-coheir U and an M-coheir V extending the type of b over
M such that ¢(x, b) k-divides along V but does not divide along .

The proof is entirely uniform in k, which leaves the following question.

Question
Does k-CTP imply 2-CTP?

We also have the following alphabetically frustrating implication:
ATP = CTP = BTP

where the antichain tree property or ATP is another candidate for 7 TP,
introduced by Ahn and Kim.
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What's special about heir-coheirs?

If U is an M-heir-coheir and B is some configuration of realizations of I/
over M, then we can find a clone B’ of B with the property that every
element of B’ realizes U over M U B.

B

James E Hanson (ISU) Special coheirs and model-theoretic trees June 3, 2025 19 /20



What's special about heir-coheirs?

If U is an M-heir-coheir and B is some configuration of realizations of I/
over M, then we can find a clone B’ of B with the property that every
element of B’ realizes U over M U B.

B’ B
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What's special about heir-coheirs?

If U is an M-heir-coheir and B is some configuration of realizations of I/
over M, then we can find a clone B’ of B with the property that every
element of B’ realizes U over M U B.

ove'
't ea\\les

B’ B
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Realize U/ ®
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Realize e o
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Realize /o ® o
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Realize V
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Super realize U
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CTP from heir-coheir U and coheir V

Super realize U
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CTP from heir-coheir U and coheir V

Realize V
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CTP from heir-coheir U and coheir V

\/ \ I | |
Super-duper realize U
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CTP from heir-coheir U and coheir V

James E Hanson (ISU) Special coheirs and model-theoretic trees June 3, 2025 20 / 20



CTP from heir-coheir U and coheir V
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Realize V
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CTP from heir-coheir U and coheir V

TEUAN

/ All right-combs are U Morley sequences
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CTP from heir-coheir U and coheir V

All paths are V Morley sequences
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Thank you
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Finding coheirs over models is trivial, but finding heir-coheirs can be hard.
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Whence do heir-coheirs come?

Finding coheirs over models is trivial, but finding heir-coheirs can be hard.
There are no heir-coheirs over (R, <) for instance.

James E Hanson (ISU) Special coheirs and model-theoretic trees June 3, 2025 23 /20



Whence do heir-coheirs come?

Finding coheirs over models is trivial, but finding heir-coheirs can be hard.
There are no heir-coheirs over (R, <) for instance.
The standard approach is this:

Fact

If U is a coheir over M and N > M is a sufficiently saturated elementary
extension, then U/ is an heir-coheir over .
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Whence do heir-coheirs come?

Finding coheirs over models is trivial, but finding heir-coheirs can be hard.
There are no heir-coheirs over (R, <) for instance.

The standard approach is this:

Fact

If U is a coheir over M and N > M is a sufficiently saturated elementary
extension, then U/ is an heir-coheir over .

This is important for the development of NTP; but is seemingly
incompatible with the way coheirs are used in NSOP; (delicately building
two coheirs extending the same type).
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Whence do heir-coheirs come?

Finding coheirs over models is trivial, but finding heir-coheirs can be hard.
There are no heir-coheirs over (R, <) for instance.

The standard approach is this:

Fact
If U is a coheir over M and N > M is a sufficiently saturated elementary
extension, then U/ is an heir-coheir over .

This is important for the development of NTP; but is seemingly
incompatible with the way coheirs are used in NSOP; (delicately building
two coheirs extending the same type).

There are many heir-coheirs over (Q, <) (any non-realized cut). Is this
generalizable?
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Miniaturizing the saturation argument

Let M be a countable model of a countable theory that is a little bit
saturated (computable saturation is more than enough).

James E Hanson (ISU) Special coheirs and model-theoretic trees June 3, 2025 24 / 20



Miniaturizing the saturation argument

Let M be a countable model of a countable theory that is a little bit
saturated (computable saturation is more than enough).

Proposition (H.)

There is a comeager set X of non-realized types over M such that any
coheir extending a type in X is an heir-coheir.
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Miniaturizing the saturation argument

Let M be a countable model of a countable theory that is a little bit
saturated (computable saturation is more than enough).

Proposition (H.)
There is a comeager set X of non-realized types over M such that any

coheir extending a type in X is an heir-coheir.

Proof sketch.

With a finite approximation t(x) of the type we are building generically,
look to see if there is a b in the monster such that ¥(x) A ¢(x, b) has
infinitely many realizations in M.
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Miniaturizing the saturation argument

Let M be a countable model of a countable theory that is a little bit
saturated (computable saturation is more than enough).

Proposition (H.)

There is a comeager set X of non-realized types over M such that any
coheir extending a type in X is an heir-coheir.

Proof sketch.

With a finite approximation t(x) of the type we are building generically,
look to see if there is a b in the monster such that ¥(x) A ¢(x, b) has
infinitely many realizations in M. Our little bit of saturation says that
there's a ¢ € M such that 9(x) A ¢(x, ¢) has infinitely many realizations
in M. Commit to this as an approximation of our type.
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Miniaturizing the saturation argument

Let M be a countable model of a countable theory that is a little bit
saturated (computable saturation is more than enough).

Proposition (H.)

There is a comeager set X of non-realized types over M such that any
coheir extending a type in X is an heir-coheir.

Proof sketch.

With a finite approximation t(x) of the type we are building generically,
look to see if there is a b in the monster such that ¥(x) A ¢(x, b) has
infinitely many realizations in M. Our little bit of saturation says that
there's a ¢ € M such that 9(x) A ¢(x, ¢) has infinitely many realizations
in M. Commit to this as an approximation of our type.

Argue that if U extends the type we built and a realizes U/ over Mb, then
every formula in the type of b over Ma is already finitely satisfiable in M
by construction. O
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Comb definitions

Short-toothed right-combs are defined inductively:
m O is a short-toothed right-comb.

m X is a short-toothed right-comb, every element of X extends o — j,
and i < j, then X U{o —~ i} is a short-toothed right-comb.

Right-combs are defined inductively:
® O is a right-comb.

m X is a right-comb, every element of X extends ¢ — j, and 7 extends
o —~ i for some i < j, then X U {7} is a right-comb.
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The miniaturized argument as a blueprint for CTP

That proof is a forcing argument: We have a set of conditions that we
need to satisfy and we are free to satisfy them generically.
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The miniaturized argument as a blueprint for CTP

That proof is a forcing argument: We have a set of conditions that we
need to satisfy and we are free to satisfy them generically.

The comb tree property (even on 2<“ rather than w<“) gives you precisely
what you need to generically build an heir-coheir U that is ‘shadowed’ by a
coheir V such that the given formula divides along V' but not along U.
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A set X C 2<% is dense above o if for every T extending o, there is a
w € X extending 7. X is somewhere dense if it is dense above some o.
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The fundamental theorem of forcing

Definition
A set X C 2<% is dense above o if for every T extending o, there is a
u € X extending 7. X is somewhere dense if it is dense above some o.

Fact

If XU Y is dense above o, then either X is dense above o or there is a 7
extending o such that Y is dense above 7.
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The fundamental theorem of forcing

Definition
A set X C 2<% is dense above o if for every T extending o, there is a
u € X extending 7. X is somewhere dense if it is dense above some o.

Fact

If XU Y is dense above o, then either X is dense above o or there is a 7
extending o such that Y is dense above 7.

Proof.

Assume X is not dense above o, then there is a 7 extending o such that X
contains no elements extending 7.
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The fundamental theorem of forcing

Definition
A set X C 2<% is dense above o if for every T extending o, there is a
u € X extending 7. X is somewhere dense if it is dense above some o.

Fact

If XU Y is dense above o, then either X is dense above o or there is a 7
extending o such that Y is dense above 7.

Proof.

Assume X is not dense above o, then there is a 7 extending o such that X
contains no elements extending 7. But then since X U Y is dense above o,
it is also dense above 7, whereby Y is dense above 7. ]
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Suppose we have a CTP tree (by),eo<w (for the formula ¢(x,y)) in a
mildly saturated countable model M.
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Forcing with comb trees

Suppose we have a CTP tree (b,),ec2<w (for the formula ¢(x,y)) in a
mildly saturated countable model M. We can generically build a path

(0)i<w of elements of 2<% and a filter F on the tree bcy<w such that
following hold:
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Forcing with comb trees

Suppose we have a CTP tree (b,),ec2<w (for the formula ¢(x,y)) in a
mildly saturated countable model M. We can generically build a path
(0)i<w of elements of 2<% and a filter F on the tree bcy<w such that
following hold:

m For each i, gj41 extends o; —~ 1.
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Forcing with comb trees

Suppose we have a CTP tree (b,),ec2<w (for the formula ¢(x,y)) in a
mildly saturated countable model M. We can generically build a path
(0)i<w of elements of 2<% and a filter F on the tree bcy<w such that
following hold:

m For each i, gj41 extends o; —~ 1.

m For each X € F, there is an i such that {b; € X : 7 = o;} is dense
above o; and is in F.
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Forcing with comb trees

Suppose we have a CTP tree (b,),ec2<w (for the formula ¢(x,y)) in a
mildly saturated countable model M. We can generically build a path
(0)i<w of elements of 2<% and a filter F on the tree bcy<w such that
following hold:

m For each i, gj41 extends o; —~ 1.

m For each X € F, there is an i such that {b; € X : 7 = o;} is dense
above o; and is in F.

m If ¢(x, c) is an M-formula (with ¢ in the monster) such that
{bs : ¥(bs, c)} has somewhere dense intersection with every element
of F, then there is a d € M such that {b, : ¢¥(b,,d)} € F.
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Forcing with comb trees

Suppose we have a CTP tree (b,),ec2<w (for the formula ¢(x,y)) in a
mildly saturated countable model M. We can generically build a path
(0)i<w of elements of 2<% and a filter F on the tree bcy<w such that
following hold:

m For each i, gj41 extends o; —~ 1.

m For each X € F, there is an i such that {b; € X : 7 = o;} is dense
above o; and is in F.

m If ¢(x, c) is an M-formula (with ¢ in the monster) such that
{bs : ¥(bs, c)} has somewhere dense intersection with every element
of F, then there is a d € M such that {b, : ¢¥(b,,d)} € F.

(Draw on chalkboard.)
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The second bullet point now ensures that

FuU U(cone above o; ~ 0)

i<w

generates a non-trivial filter,
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Forcing with comb trees Il

The second bullet point now ensures that

FuU U(cone above o; —~ 0)

i<w

generates a non-trivial filter, which can be extended to an ultrafilter &/
whose elements are all somewhere dense.
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Forcing with comb trees Il

The second bullet point now ensures that

FuU {U(cone above g; ~ O)}

i<w

generates a non-trivial filter, which can be extended to an ultrafilter &/
whose elements are all somewhere dense.
The third bullet point ensures that I/ is in fact an heir-coheir
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Forcing with comb trees Il

The second bullet point now ensures that

FuU {U(cone above g; ~ O)}

i<w

generates a non-trivial filter, which can be extended to an ultrafilter &/
whose elements are all somewhere dense.

The third bullet point ensures that U is in fact an heir-coheir and the extra
set added to F ensures that ¢(x, y) does not divide along U.
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Forcing with comb trees Il

The second bullet point now ensures that

FuU {U(cone above g; ~ O)}

i<w
generates a non-trivial filter, which can be extended to an ultrafilter &/
whose elements are all somewhere dense.
The third bullet point ensures that U is in fact an heir-coheir and the extra

set added to F ensures that ¢(x, y) does not divide along U.
Finally, let V be any non-principal ultrafilter on {b,, : i < w}.
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Forcing with comb trees Il

The second bullet point now ensures that

FuU {U(cone above g; ~ O)}

i<w
generates a non-trivial filter, which can be extended to an ultrafilter &/
whose elements are all somewhere dense.
The third bullet point ensures that U is in fact an heir-coheir and the extra
set added to F ensures that ¢(x, y) does not divide along U.

Finally, let V be any non-principal ultrafilter on {b,, : i < w}. By
construction, ¢(x, y) will divide along V.
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Forcing with comb trees Il

The second bullet point now ensures that

FuU {U(cone above g; ~ O)}

i<w

generates a non-trivial filter, which can be extended to an ultrafilter &/
whose elements are all somewhere dense.

The third bullet point ensures that U is in fact an heir-coheir and the extra
set added to F ensures that ¢(x, y) does not divide along U.

Finally, let V be any non-principal ultrafilter on {b,, : i < w}. By
construction, ¢(x, y) will divide along V. Furthermore, the third bullet
point will ensure that &/ and V extend the same type over M, so we have
the required failure of Kim’s lemma for coheirs and heir-coheirs.
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Forcing with comb trees Il

/ /
-
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