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Generically Stability

T is stable iff every indiscernible sequence (ai )i<ω has the
finite-cofinite property: For any definable set D in any elementary
extension, D ∩ a<ω is either finite or cofinite.

This can occur even in unstable theories, although examples are
somewhat rare.

a<ω has a global average type: φ(x , b) ∈ Av(a<ω) if and only if
{i < ω : φ(ai , b)} is infinite.

Example of an invariant type: A coherent way of building a type over
any elementary extension. Examples: Definable types over models of
PA, types induced by ultrafilters on structures (coheirs), etc.

Av(a<ω) has a particularly nice property: If you realize it iteratively to
get (bi )i<ω, then b<ω also has the finite-cofinite property and has
Av(b<ω) = Av(a<ω). These types are called generically stable.
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Aside: Interesting Open Question

Given M-invariant types p(x) and q(y), there is a unique M-invariant
type p ⊗ q(x , y) satisfying that if ab |= p ⊗ q↾N (for some elementary
extension N ⪰ M), then a |= p↾Nb and b |= q↾N.

This is called the Morley product of p(x) and q(y).

Question

If p(x) and q(y) are generically stable, is p ⊗ q(x , y) generically stable?

Surprisingly obnoxious to resolve in general.
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Keisler Measures

For model theory reasons, Keisler studied a real-valued generalization
of types:

A Keisler measure µ(x) over a model M is a probability
measure on the Boolean algebra of M-definable sets.

Any type p induces a corresponding Dirac measure δp concentrating
on p.

Like with types, there is a good notion of invariant measures, which
can be thought of as a coherent way of building a measure over any
elementary extension.

Example: Let µ be a finitely additive probability measure on 2M . For
any elementary extension N ⪰ M, we get a measure on N-definable
sets by ν(D) = µ(D ∩M). Call such a measure a coheir measure.

Invariant measures are coherent procedures for ‘randomly generating
a type’ over any larger model.
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Morley Product of Invariant Measures

Given two M-invariant measures µ(x) and ν(y), there (sometimes) is an
M-invariant measure µ⊗ ν(x , y) that represents ‘randomly realizing ν and
then randomly realizing µ over that.’

But it has some issues:

Theorem (Conant, Gannon, H.)

The Morley product of measures can fail to be associative in a strong way:
There are invariant measures µ, ν, and λ such that µ⊗ ν, ν ⊗ λ,
(µ⊗ ν) ⊗ λ, and µ⊗ (ν ⊗ λ) all exist and look somewhat tame yet
(µ⊗ ν) ⊗ λ ̸= µ⊗ (ν ⊗ λ).

Sketchy Proof.

If you randomly pick a real in 2ω, the probability of getting any individual
real is 0, yet the probability of getting some real is 1.∑

r∈2ω 0 = 0 ̸= 1.
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Fiber Functions

An M-invariant type p(x) can be represented using fiber functions:

For each formula φ(x , y) and q(y) ∈ Sy (M),

Fφ
p (q) =

{
1 φ(x , b) ∈ p(x) for some/any b |= q

0 φ(x , b) /∈ p(x) for some/any b |= q

An M-invariant measure µ(x) has something similar:
Fφ
µ (q) = µ(φ(x , b)) for some/any b |= q.

An invariant type or measure is definable if its fiber functions are
continuous. For types this corresponds to the more traditional
definition.
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Nice Types

A generically stable type is always a definable coheir:

Definable because compactness gives a uniform ‘majority rules’
definition for each formula.
Coheir because any (non-principal) ultrafilter on the corresponding
sequence yields the type.

(Hrushovski, Pillay, Simon) In NIP sufficiently nice theories, definable
coheirs are generically stable.

(Conant, Gannon) This fails in insufficiently nice theories. Also, in
many theories, such as PA and ZFC, there aren’t any definable
coheirs.
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Generically Stable Measures?

As we saw, definability and coheirdom both make sense for measures.

(Hrushovski, Pillay, Simon) In NIP sufficiently nice theories, definable
coheir measures have a stronger property:

Definition Idea

A measure µ is a frequency interpretation measure (or fim measure) if
whenever “(ai )i<ω is a sequence generated by iteratively realizing µ,” the
quantity 1

n |{i < n : φ(ai , b)}| limits to µ(φ(x , b)) with probability 1.

Not too hard to show that any fim measure is a definable coheir.

(Conant, Gannon) An invariant type p(x) is generically stable if and
only if δp(x) is fim.

But is this really the right notion of generic stability for measures?
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Randomizations and Continuous Logic

Given a theory T , a model of the randomization of T (written TR) is
a Boolean-valued model of T where the Boolean algebra comes with
a given probability measure µ.

Randomizations can also be thought of as metric structures and
analyzed in the framework of continuous first-order logic, which is a
real-valued generalization of first-order logic suitable for studying
structures with underlying metrics.

Connectives are taken to be arbitrary continuous functions on R and
quantifiers are taken to be inf and sup.

Continuous logic is in a strong sense equivalent to earlier approaches
to real-valued logics, such as [0, 1]-valued  Lukasiewicz logic, but the
associated model-theoretic approach is largely new.

Everything familiar from ordinary model theory generalizes to
continuous model theory: Compactness, Löwenheim–Skolem, Craig
interpolation, Ryll-Nardzewski, Lindström, stability theory, etc.
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interpolation, Ryll-Nardzewski, Lindström, stability theory, etc.

James Hanson Generic Stability and Randomizations May 26, 2023 7 / 11



Randomizations and Continuous Logic

Given a theory T , a model of the randomization of T (written TR) is
a Boolean-valued model of T where the Boolean algebra comes with
a given probability measure µ.

Randomizations can also be thought of as metric structures and
analyzed in the framework of continuous first-order logic, which is a
real-valued generalization of first-order logic suitable for studying
structures with underlying metrics.

Connectives are taken to be arbitrary continuous functions on R and
quantifiers are taken to be inf and sup.

Continuous logic is in a strong sense equivalent to earlier approaches
to real-valued logics, such as [0, 1]-valued  Lukasiewicz logic, but the
associated model-theoretic approach is largely new.

Everything∗ familiar from ordinary model theory generalizes to
continuous model theory: Compactness, Löwenheim–Skolem, Craig
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Continuous Logic and Randomizations

Any continuous function on type space can be ‘safely’ thought of as
being a formula in continuous logic. This is the morally correct notion
of formula.

In particular, if µ(x) is a definable invariant measure, then for any
formula φ(x , y), we can think of Fφ

µ as being a formula in the sense
of continuous logic.

This allows us to quantify over expressions involving Fφ
µ .

James Hanson Generic Stability and Randomizations May 26, 2023 8 / 11



Continuous Logic and Randomizations

Any continuous function on type space can be ‘safely’ thought of as
being a formula in continuous logic. This is the morally correct notion
of formula.

In particular, if µ(x) is a definable invariant measure, then for any
formula φ(x , y), we can think of Fφ

µ as being a formula in the sense
of continuous logic.

This allows us to quantify over expressions involving Fφ
µ .

James Hanson Generic Stability and Randomizations May 26, 2023 8 / 11



Continuous Logic and Randomizations

Any continuous function on type space can be ‘safely’ thought of as
being a formula in continuous logic. This is the morally correct notion
of formula.

In particular, if µ(x) is a definable invariant measure, then for any
formula φ(x , y), we can think of Fφ

µ as being a formula in the sense
of continuous logic.

This allows us to quantify over expressions involving Fφ
µ .

James Hanson Generic Stability and Randomizations May 26, 2023 8 / 11



Transferring Measures

In TR , every (discrete or continuous) formula φ in T has a
corresponding expected value formula E [φ] in TR .

TR has quantifier elimination to connective combinations of formulas
of the form E [φ].

Types in S(TR) correspond precisely to measures in T (over ∅).

What about parameters? What about invariant types and measures?

(Ben Yaacov) For any A-definable measure µ, there is a unique
corresponding ∅-definable type rµ in (TA)R satisfying

Fφ
µ (q) = F

E [φ]
rµ (δq). (Extend defining schema linearly.)

(Conant, Gannon, H.) There is a definable coheir p with the property
that rδp is not a coheir.

fim and generic stability?
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fim and Generic Stability in the Randomization I

For any definable measure ν(x), let

χφ
ν,n(x1 . . . xn) = sup

y

∣∣∣∣ 1

n
(φ(x1, y) + · · · + φ(xn, y)︸ ︷︷ ︸

True is 1.
False is 0.

) − Fφ
ν (tp(y/A))

∣∣∣∣ .

χφ
ν,n(x̄) measures how well x̄ approximates the behavior of ν(x) on

average for the formula φ(x , y).

χφ
ν,n(x̄) is a formula in the sense of continuous logic (because ν(x) is

definable).
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fim and Generic Stability in the Randomization II

Fix an A-definable measure µ(x) in T .

Let rµ(x) be the corresponding
type in (TA)R .

µ(x) is fim iff for every φ(x , y), limn→∞
∫
χφ
µ,n(x̄)dµ⊗n(x̄) = 0.

rµ(x) is generically stable iff for every φ(x , y) (from T ),

limn→∞ r⊗n
µ

(
χ
E [φ]
rµ,n (x̄)

)
= 0. (Uses QE down to E [φ].)

Some calculation gives:

r⊗n
µ

(
χ
E [φ]
rµ,n (x̄)

)
= r⊗n

µ

(
sup
y

∣∣∣∣E [
φ(x1y) + · · · + φ(xny)

n
− Fφ

µ (y)

]∣∣∣∣)∫
χφ
µ,ndµ

⊗n = r⊗n
µ

(
sup
y

E

[∣∣∣∣φ(x1y) + · · · + φ(xny)

n
− Fφ

µ (y)

∣∣∣∣])
First ≤ second by Jensen’s inequality, so if µ is fim, then rµ is generically
stable, but will it reverse?
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∫
χφ
µ,n(x̄)dµ⊗n(x̄) = 0.

rµ(x) is generically stable iff for every φ(x , y) (from T ),

limn→∞ r⊗n
µ

(
χ
E [φ]
rµ,n (x̄)

)
= 0. (Uses QE down to E [φ].)

Some calculation gives:

r⊗n
µ

(
χ
E [φ]
rµ,n (x̄)

)
= r⊗n

µ

(
sup
y

∣∣∣∣E [
φ(x1y) + · · · + φ(xny)

n
− Fφ

µ (y)

]∣∣∣∣)∫
χφ
µ,ndµ

⊗n = r⊗n
µ

(
sup
y

E

[∣∣∣∣φ(x1y) + · · · + φ(xny)

n
− Fφ

µ (y)

∣∣∣∣])
First ≤ second by Jensen’s inequality, so if µ is fim, then rµ is generically
stable, but will it reverse?
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Thank you
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