Forcing with model-theoretic trees

James Hanson

University of Maryland

October 24, 2023 University of Maryland Logic Seminar

A formula $\varphi(x,y)$ has the *k*-tree property if there is a tree $(c_{\sigma})_{\sigma \in \omega^{<\omega}}$ of parameters such that

- paths are consistent: $\{\varphi(x, c_{\alpha \upharpoonright n}) : n < \omega\}$ for $\alpha \in \omega^{\omega}$,
- siblings are *k*-inconsistent: $\{\varphi(x, c_{\sigma \frown n}) : n < \omega\}$.

A formula $\varphi(x,y)$ has the k-tree property if there is a tree $(c_{\sigma})_{\sigma \in \omega^{<\omega}}$ of parameters such that

- paths are consistent: $\{\varphi(x, c_{\alpha \upharpoonright n}) : n < \omega\}$ for $\alpha \in \omega^{\omega}$,
- siblings are *k*-inconsistent: $\{\varphi(x, c_{\sigma \frown n}) : n < \omega\}$.

Example $\varphi(x, a, b) = (a < x < b)$ with c = ab in $(\mathbb{Q}, <)$:

a_∅

A formula $\varphi(x,y)$ has the k-tree property if there is a tree $(c_{\sigma})_{\sigma \in \omega^{<\omega}}$ of parameters such that

- paths are consistent: $\{\varphi(x, c_{\alpha \upharpoonright n}) : n < \omega\}$ for $\alpha \in \omega^{\omega}$,
- siblings are *k*-inconsistent: $\{\varphi(x, c_{\sigma \frown n}) : n < \omega\}$.

Example $\varphi(x, a, b) = (a < x < b)$ with c = ab in $(\mathbb{Q}, <)$:

$$\begin{pmatrix} a_0 & b_0 & a_1 & b_1 & a_2 & b_2 & b_3 & b_4 \\ \begin{pmatrix} b_1 & b_1 & b_2 & b_2 & b_3 & b_4 \\ & & & & & & \end{pmatrix} \begin{pmatrix} b_1 & b_2 & b_3 & b_4 \\ & & & & & & \end{pmatrix}$$

A formula $\varphi(x,y)$ has the k-tree property if there is a tree $(c_\sigma)_{\sigma\in\omega^{<\omega}}$ of parameters such that

- paths are consistent: $\{\varphi(x, c_{\alpha \upharpoonright n}) : n < \omega\}$ for $\alpha \in \omega^{\omega}$,
- siblings are *k*-inconsistent: $\{\varphi(x, c_{\sigma \frown n}) : n < \omega\}$.

Example $\varphi(x, a, b) = (a < x < b)$ with c = ab in $(\mathbb{Q}, <)$:

A formula $\varphi(x,y)$ has the k-tree property if there is a tree $(c_{\sigma})_{\sigma \in \omega^{<\omega}}$ of parameters such that

- paths are consistent: $\{\varphi(x, c_{\alpha \upharpoonright n}) : n < \omega\}$ for $\alpha \in \omega^{\omega}$,
- siblings are *k*-inconsistent: $\{\varphi(x, c_{\sigma \frown n}) : n < \omega\}$.

Example $\varphi(x, a, b) = (a < x < b)$ with c = ab in $(\mathbb{Q}, <)$:

Paths are consistent

Paths are consistent

Paths are consistent

(Extremely revisionist definition) A formula $\varphi(x,c)$ has the *k-tree property* of the first kind

(Extremely revisionist definition) A formula $\varphi(x,c)$ has the k-tree property of the first kind or k-SOP $_1$

(Extremely revisionist definition) A formula $\varphi(x,c)$ has the k-tree property of the first kind or k-SOP $_1$ if there is a tree $(c_\sigma)_{\sigma\in\omega^{<\omega}}$ of parameters such that

(Extremely revisionist definition) A formula $\varphi(x,c)$ has the k-tree property of the first kind or k-SOP $_1$ if there is a tree $(c_\sigma)_{\sigma\in\omega^{<\omega}}$ of parameters such that

■ paths are consistent: $\{\varphi(x, c_{\alpha \upharpoonright n}) : n < \omega\}$ for $\alpha \in \omega^{\omega}$,

(Extremely revisionist definition) A formula $\varphi(x,c)$ has the k-tree property of the first kind or k-SOP $_1$ if there is a tree $(c_\sigma)_{\sigma\in\omega^{<\omega}}$ of parameters such that

- paths are consistent: $\{\varphi(x, c_{\alpha \upharpoonright n}) : n < \omega\}$ for $\alpha \in \omega^{\omega}$,
- for any short-toothed right-comb $X \subset \omega^{<\omega}$, $\{\varphi(x, c_\sigma) : \sigma \in X\}$ is k-inconsistent.

(Extremely revisionist definition) A formula $\varphi(x,c)$ has the k-tree property of the first kind or k-SOP $_1$ if there is a tree $(c_\sigma)_{\sigma\in\omega^{<\omega}}$ of parameters such that

- paths are consistent: $\{\varphi(x, c_{\alpha \upharpoonright n}) : n < \omega\}$ for $\alpha \in \omega^{\omega}$,
- for any short-toothed right-comb $X \subset \omega^{<\omega}$, $\{\varphi(x, c_{\sigma}) : \sigma \in X\}$ is k-inconsistent.

Short-toothed right-combs are defined inductively:

(Extremely revisionist definition) A formula $\varphi(x,c)$ has the k-tree property of the first kind or k-SOP $_1$ if there is a tree $(c_\sigma)_{\sigma\in\omega^{<\omega}}$ of parameters such that

- lacksquare paths are consistent: $\{\varphi(\mathbf{x}, \mathbf{c}_{\alpha \upharpoonright n}) : n < \omega\}$ for $\alpha \in \omega^{\omega}$,
- for any short-toothed right-comb $X \subset \omega^{<\omega}$, $\{\varphi(x, c_{\sigma}) : \sigma \in X\}$ is k-inconsistent.

Short-toothed right-combs are defined inductively:

 \blacksquare \varnothing is a short-toothed right-comb.

(Extremely revisionist definition) A formula $\varphi(x,c)$ has the k-tree property of the first kind or k-SOP $_1$ if there is a tree $(c_\sigma)_{\sigma\in\omega^{<\omega}}$ of parameters such that

- lacksquare paths are consistent: $\{\varphi(\mathbf{x}, \mathbf{c}_{\alpha \upharpoonright n}) : n < \omega\}$ for $\alpha \in \omega^{\omega}$,
- for any short-toothed right-comb $X \subset \omega^{<\omega}$, $\{\varphi(x, c_{\sigma}) : \sigma \in X\}$ is k-inconsistent.

Short-toothed right-combs are defined inductively:

- \blacksquare \varnothing is a short-toothed right-comb.
- X is a short-toothed right-comb, every element of X extends $\sigma \frown j$, and i < j, then $X \cup \{\sigma \frown i\}$ is a short-toothed right-comb.

A short-toothed right-comb

$$(\mathbb{Q},<)$$
 has 2-SOP₁

In our tree in $(\mathbb{Q},<)$, any pair of incomparable elements are inconsistent.

$$\begin{array}{c|c} \begin{pmatrix} a_0 & & & \\ \begin{pmatrix} \begin{pmatrix} \\ \\ \\ \\ a_{00} \end{pmatrix} & \begin{pmatrix} \\ \\ \\ \\ \\ \\ \end{pmatrix} & \begin{pmatrix} \\ \\ \\ \\ \end{pmatrix} & \begin{pmatrix} \\ \\ \\ \\ \end{pmatrix} & \begin{pmatrix} \\ \\ \\ \\ \\ \end{pmatrix} & \end{pmatrix} & \begin{pmatrix} \\ \\ \\ \\ \\ \end{pmatrix} & \begin{pmatrix} \\ \\ \\ \\ \end{pmatrix} & \begin{pmatrix} \\ \\ \\ \\ \end{pmatrix} & \begin{pmatrix} \\ \\ \\ \\ \end{pmatrix} & \end{pmatrix} & \begin{pmatrix} \\ \\ \\ \\ \\ \end{pmatrix} & \begin{pmatrix} \\ \\ \\ \\ \end{pmatrix} & \begin{pmatrix} \\ \\ \\ \\ \end{pmatrix} & \end{pmatrix} & \begin{pmatrix} \\ \\ \\ \\ \\ \end{pmatrix} & \begin{pmatrix} \\ \\ \\ \\ \end{pmatrix} & \begin{pmatrix} \\ \\ \\ \\ \end{pmatrix} & \end{pmatrix} & \begin{pmatrix} \\ \\ \\ \\ \\ \end{pmatrix} & \begin{pmatrix} \\ \\ \\ \\ \end{pmatrix} & \end{pmatrix} & \begin{pmatrix} \\ \\ \\ \\ \\ \end{pmatrix} & \begin{pmatrix} \\ \\ \\ \\ \\ \end{pmatrix} & \end{pmatrix} & \begin{pmatrix} \\ \\ \\ \\ \\ \\ \end{pmatrix} & \end{pmatrix} & \begin{pmatrix} \\ \\ \\ \\ \\ \end{pmatrix} & \end{pmatrix} & \begin{pmatrix} \\ \\ \\ \\ \\ \end{pmatrix} & \end{pmatrix} & \begin{pmatrix} \\ \\ \\ \\ \\ \\ \end{pmatrix} & \end{pmatrix} & \begin{pmatrix} \\ \\$$

Hence any short-toothed right-comb is 2-inconsistent.

Examples:

Examples:

Simple: Generic graph

Examples:

Simple: Generic graph

NSOP₁: Generic binary

function

Examples:

Simple: Generic graph

NSOP₁: Generic binary function

NTP₂: Generic linearly

ordered graph

Examples:

Simple: Generic graph

NSOP₁: Generic binary function

NTP₂: Generic linearly ordered graph

Examples:

Simple: Generic graph

NSOP₁: Generic binary function

NTP₂: Generic linearly ordered graph

N?TP: Generic linear order + binary function

Given a structure M we can use an ultrafilter \mathcal{U} on M (an M-coheir) to 'generate' a sequence of new elements (in the monster model).

Given a structure M we can use an ultrafilter \mathcal{U} on M (an M-coheir) to 'generate' a sequence of new elements (in the monster model).

Given a structure M we can use an ultrafilter \mathcal{U} on M (an M-coheir) to 'generate' a sequence of new elements (in the monster model).

Given a structure M we can use an ultrafilter \mathcal{U} on M (an M-coheir) to 'generate' a sequence of new elements (in the monster model).

Given a structure M we can use an ultrafilter \mathcal{U} on M (an M-coheir) to 'generate' a sequence of new elements (in the monster model).

Example $(\mathbb{Q}, <)$ with ultrafilter concentrating at $+\infty$:

■ a_{i+1} is what \mathcal{U} 'looks like' to \mathbb{Q} and a_0, \ldots, a_i .

Given a structure M we can use an ultrafilter \mathcal{U} on M (an M-coheir) to 'generate' a sequence of new elements (in the monster model).

- a_{i+1} is what \mathcal{U} 'looks like' to \mathbb{Q} and a_0, \ldots, a_i .
- a_{i+1} realizes \mathcal{U} over $\mathbb{Q} \cup \{a_0, \ldots, a_i\}$.

Coheirs

Given a structure M we can use an ultrafilter \mathcal{U} on M (an M-coheir) to 'generate' a sequence of new elements (in the monster model).

Example $(\mathbb{Q}, <)$ with ultrafilter concentrating at $+\infty$:

- a_{i+1} is what \mathcal{U} 'looks like' to \mathbb{Q} and a_0, \ldots, a_i .
- a_{i+1} realizes \mathcal{U} over $\mathbb{Q} \cup \{a_0, \ldots, a_i\}$.
- a_0, a_1, \ldots is the Morley sequence generated by \mathcal{U} .

SOP₁ in terms of coheirs

Definition

Given a coheir $\mathcal U$ over a model M, a formula $\varphi(x,y)$ k-divides along $\mathcal U$ if whenever b_0,b_1,\ldots is a Morley sequence generated by $\mathcal U$, $\{\varphi(x,b_i):i<\omega\}$ is k-inconsistent.

SOP₁ in terms of coheirs

Definition

Given a coheir \mathcal{U} over a model M, a formula $\varphi(x,y)$ k-divides along \mathcal{U} if whenever b_0,b_1,\ldots is a Morley sequence generated by \mathcal{U} , $\{\varphi(x,b_i):i<\omega\}$ is k-inconsistent.

Theorem (Kaplan, Ramsey)

T has SOP_1 if and only if there is a model M, two coheirs $\mathcal U$ and $\mathcal V$ (extending the same type), and a formula $\varphi(x,y)$ such that $\varphi(x,y)$ divides along $\mathcal U$ but not along $\mathcal V$.

Two non-trivial coheirs of the 2-type living in the cut at π over \mathbb{Q} :

Two non-trivial coheirs of the 2-type living in the cut at π over \mathbb{Q} :

■ \mathcal{U}_{pinch} corresponding to two elements 'pinching' the cut (coming in from both sides).

Two non-trivial coheirs of the 2-type living in the cut at π over \mathbb{Q} :

- \mathcal{U}_{pinch} corresponding to two elements 'pinching' the cut (coming in from both sides).
- $m U_{
 m below}$ corresponding to two elements sliding towards the cut from below.

Two non-trivial coheirs of the 2-type living in the cut at π over \mathbb{Q} :

- \mathcal{U}_{pinch} corresponding to two elements 'pinching' the cut (coming in from both sides).
- lacksquare $\mathcal{U}_{\mathsf{below}}$ corresponding to two elements sliding towards the cut from below.

The formula (a < x < b) divides along \mathcal{U}_{below} but not along \mathcal{U}_{pinch} .

Two non-trivial coheirs of the 2-type living in the cut at π over \mathbb{Q} :

- \mathcal{U}_{pinch} corresponding to two elements 'pinching' the cut (coming in from both sides).
- lacksquare $\mathcal{U}_{\mathsf{below}}$ corresponding to two elements sliding towards the cut from below.

The formula (a < x < b) divides along \mathcal{U}_{below} but not along \mathcal{U}_{pinch} .

Two non-trivial coheirs of the 2-type living in the cut at π over \mathbb{Q} :

- \mathcal{U}_{pinch} corresponding to two elements 'pinching' the cut (coming in from both sides).
- lacksquare $\mathcal{U}_{\mathsf{below}}$ corresponding to two elements sliding towards the cut from below.

The formula (a < x < b) divides along \mathcal{U}_{below} but not along \mathcal{U}_{pinch} .

Heir-coheirs

 $\mathcal{U}_{\text{below}}$ has a special property. The Morley sequence it generates

Heir-coheirs

 $\mathcal{U}_{\mathsf{below}}$ has a special property. The Morley sequence it generates

is 'the same' as the Morley sequence generated by a different coheir backwards:

Heir-coheirs

 $\mathcal{U}_{\text{below}}$ has a special property. The Morley sequence it generates

is 'the same' as the Morley sequence generated by a different coheir backwards:

This is non-trivial. \mathcal{U}_{pinch} does not have this property.

Definition

 $\mathcal U$ is an M-heir-coheir if whenever b realizes $\mathcal U$ over $M \cup A$, there is an M-coheir $\mathcal V$ such that A realizes $\mathcal V$ over $M \cup b$.

Definition

 $\mathcal U$ is an M-heir-coheir if whenever b realizes $\mathcal U$ over $M \cup A$, there is an M-coheir $\mathcal V$ such that A realizes $\mathcal V$ over $M \cup b$.

A formula $\varphi(x,b)$ k-divides over M if there is a sequence $(b_i)_{i<\omega}$ of realizations of the type of b over M such that $\{\varphi(x,b_i):i<\omega\}$ is k-inconsistent.

Definition

 $\mathcal U$ is an M-heir-coheir if whenever b realizes $\mathcal U$ over $M \cup A$, there is an M-coheir $\mathcal V$ such that A realizes $\mathcal V$ over $M \cup b$.

A formula $\varphi(x,b)$ k-divides over M if there is a sequence $(b_i)_{i<\omega}$ of realizations of the type of b over M such that $\{\varphi(x,b_i):i<\omega\}$ is k-inconsistent.

Theorem (Chernikov, Kaplan)

T has TP_2 if and only if there is a model M, a formula $\varphi(x,b)$, and an M-heir-coheir $\mathcal U$ extending the type of b over M such that $\varphi(x,b)$ divides over M but does not divide along $\mathcal U$.

Definition

 $\mathcal U$ is an M-heir-coheir if whenever b realizes $\mathcal U$ over $M \cup A$, there is an M-coheir $\mathcal V$ such that A realizes $\mathcal V$ over $M \cup b$.

A formula $\varphi(x,b)$ k-divides over M if there is a sequence $(b_i)_{i<\omega}$ of realizations of the type of b over M such that $\{\varphi(x,b_i):i<\omega\}$ is k-inconsistent.

Theorem (Chernikov, Kaplan)

T has TP_2 if and only if there is a model M, a formula $\varphi(x,b)$, and an M-heir-coheir $\mathcal U$ extending the type of b over M such that $\varphi(x,b)$ divides over M but does not divide along $\mathcal U$.

DLO (theory of $(\mathbb{Q}, <)$) is NTP₂.

Kruckman and Ramsey suggested formulating N?TP via a mutual generalization of the Kim's lemmas for $NSOP_1$ and NTP_2 .

Kruckman and Ramsey suggested formulating N?TP via a mutual generalization of the Kim's lemmas for $NSOP_1$ and NTP_2 .

■ NSOP₁: If $\varphi(x, b)$ divides along some coheir, then it divides along every coheir.

Kruckman and Ramsey suggested formulating N?TP via a mutual generalization of the Kim's lemmas for $NSOP_1$ and NTP_2 .

- NSOP₁: If $\varphi(x, b)$ divides along some coheir, then it divides along every coheir.
- NTP₂: If $\varphi(x, b)$ divides, then it divides along every heir-coheir.

Kruckman and Ramsey suggested formulating N?TP via a mutual generalization of the Kim's lemmas for $NSOP_1$ and NTP_2 .

- NSOP₁: If $\varphi(x, b)$ divides along some coheir, then it divides along every coheir.
- NTP₂: If $\varphi(x, b)$ divides, then it divides along every heir-coheir.

Lead them to the *bizarre tree property* or *BTP* (uses a weakening of heir-coheirdom).

Kruckman and Ramsey suggested formulating N?TP via a mutual generalization of the Kim's lemmas for $NSOP_1$ and NTP_2 .

- NSOP₁: If $\varphi(x, b)$ divides along some coheir, then it divides along every coheir.
- NTP₂: If $\varphi(x, b)$ divides, then it divides along every heir-coheir.

Lead them to the *bizarre tree property* or *BTP* (uses a weakening of heir-coheirdom).

Their philosophy also suggests the following:

Kruckman and Ramsey suggested formulating N?TP via a mutual generalization of the Kim's lemmas for $NSOP_1$ and NTP_2 .

- NSOP₁: If $\varphi(x, b)$ divides along some coheir, then it divides along every coheir.
- NTP₂: If $\varphi(x, b)$ divides, then it divides along every heir-coheir.

Lead them to the *bizarre tree property* or *BTP* (uses a weakening of heir-coheirdom).

Their philosophy also suggests the following:

? N?TP: If $\varphi(x,b)$ divides along some coheir, then it divides along every heir-coheir?

A formula $\varphi(x,c)$ has the *k-comb tree property* or *k-CTP* if there is a tree $(c_{\sigma})_{\sigma \in \omega^{<\omega}}$ of parameters such that

A formula $\varphi(x,c)$ has the *k-comb tree property* or *k-CTP* if there is a tree $(c_{\sigma})_{\sigma \in \omega^{<\omega}}$ of parameters such that

■ paths are k-inconsistent: $\{\varphi(x, c_{\alpha \upharpoonright n}) : n < \omega\}$ for $\alpha \in \omega^{\omega}$,

A formula $\varphi(x,c)$ has the k-comb tree property or k-CTP if there is a tree $(c_{\sigma})_{\sigma \in \omega^{<\omega}}$ of parameters such that

- paths are *k*-inconsistent: $\{\varphi(x, c_{\alpha \upharpoonright n}) : n < \omega\}$ for $\alpha \in \omega^{\omega}$,
- for any right-comb $X \subset \omega^{<\omega}$, $\{\varphi(x, c_{\sigma}) : \sigma \in X\}$ is **consistent**.

(Note the switcheroo.)

A formula $\varphi(x,c)$ has the *k-comb tree property* or *k-CTP* if there is a tree $(c_{\sigma})_{\sigma \in \omega^{<\omega}}$ of parameters such that

- paths are *k*-inconsistent: $\{\varphi(x, c_{\alpha \upharpoonright n}) : n < \omega\}$ for $\alpha \in \omega^{\omega}$,
- for any right-comb $X \subset \omega^{<\omega}$, $\{\varphi(x, c_{\sigma}) : \sigma \in X\}$ is **consistent**.

(Note the switcheroo.)

Right-combs are defined inductively:

A formula $\varphi(x,c)$ has the k-comb tree property or k-CTP if there is a tree $(c_{\sigma})_{\sigma \in \omega^{<\omega}}$ of parameters such that

- paths are k-inconsistent: $\{\varphi(x, c_{\alpha \upharpoonright n}) : n < \omega\}$ for $\alpha \in \omega^{\omega}$,
- for any right-comb $X \subset \omega^{<\omega}$, $\{\varphi(x, c_{\sigma}) : \sigma \in X\}$ is **consistent**.

(Note the switcheroo.)

Right-combs are defined inductively:

 \blacksquare \varnothing is a right-comb.

A formula $\varphi(x,c)$ has the k-comb tree property or k-CTP if there is a tree $(c_{\sigma})_{\sigma\in\omega^{<\omega}}$ of parameters such that

- paths are k-inconsistent: $\{\varphi(x, c_{\alpha \upharpoonright n}) : n < \omega\}$ for $\alpha \in \omega^{\omega}$,
- for any right-comb $X \subset \omega^{<\omega}$, $\{\varphi(x, c_{\sigma}) : \sigma \in X\}$ is **consistent**.

(Note the switcheroo.)

Right-combs are defined inductively:

- \blacksquare \varnothing is a right-comb.
- X is a right-comb, every element of X extends $\sigma \frown j$, and τ extends $\sigma \frown i$ for some i < j, then $X \cup \{\tau\}$ is a right-comb.

A formula $\varphi(x,c)$ has the k-comb tree property or k-CTP if there is a tree $(c_{\sigma})_{\sigma\in\omega^{<\omega}}$ of parameters such that

- paths are k-inconsistent: $\{\varphi(x, c_{\alpha \upharpoonright n}) : n < \omega\}$ for $\alpha \in \omega^{\omega}$,
- for any right-comb $X \subset \omega^{<\omega}$, $\{\varphi(x, c_{\sigma}) : \sigma \in X\}$ is **consistent**.

(Note the switcheroo.)

Right-combs are defined inductively:

- \blacksquare \varnothing is a right-comb.
- X is a right-comb, every element of X extends $\sigma \frown j$, and τ extends $\sigma \frown i$ for some i < j, then $X \cup \{\tau\}$ is a right-comb.

Mutchnik established the following in his proof that $NSOP_1 = NSOP_2$.

Theorem (Mutchnik)

The above condition without the switcheroo is equivalent to SOP_1 .

A right-comb

Characterization of CTP

Theorem (H.)

A theory has k-CTP if and only if there is a model M, a formula $\varphi(x,b)$, and an M-heir-coheir $\mathcal U$ and an M-coheir $\mathcal V$ extending the type of b over M such that $\varphi(x,b)$ k-divides along $\mathcal V$ but does not divide along $\mathcal U$.

Characterization of CTP

Theorem (H.)

A theory has k-CTP if and only if there is a model M, a formula $\varphi(x,b)$, and an M-heir-coheir $\mathcal U$ and an M-coheir $\mathcal V$ extending the type of b over M such that $\varphi(x,b)$ k-divides along $\mathcal V$ but does not divide along $\mathcal U$.

The proof is entirely uniform in k, which leaves the following question.

Question

Does k-CTP imply 2-CTP?

Characterization of CTP

Theorem (H.)

A theory has k-CTP if and only if there is a model M, a formula $\varphi(x,b)$, and an M-heir-coheir $\mathcal U$ and an M-coheir $\mathcal V$ extending the type of b over M such that $\varphi(x,b)$ k-divides along $\mathcal V$ but does not divide along $\mathcal U$.

The proof is entirely uniform in k, which leaves the following question.

Question

Does k-CTP imply 2-CTP?

We also have the following alphabetically frustrating implication:

$$ATP \Rightarrow CTP \Rightarrow BTP$$

where the *antichain tree property* or *ATP* is another candidate for ?TP, introduced by Ahn and Kim.

What's special about heir-coheirs?

If $\mathcal U$ is an M-heir-coheir and B is some configuration of realizations of $\mathcal U$ over M, then we can find a clone B' of B with the property that every element of B' realizes $\mathcal U$ over $M \cup B$.

What's special about heir-coheirs?

If $\mathcal U$ is an M-heir-coheir and B is some configuration of realizations of $\mathcal U$ over M, then we can find a clone B' of B with the property that every element of B' realizes $\mathcal U$ over $M \cup B$.

What's special about heir-coheirs?

If $\mathcal U$ is an M-heir-coheir and B is some configuration of realizations of $\mathcal U$ over M, then we can find a clone B' of B with the property that every element of B' realizes $\mathcal U$ over $M \cup B$.

Forcing

Finding coheirs over models is trivial, but finding heir-coheirs can be hard.

Finding coheirs over models is trivial, but finding heir-coheirs can be hard. There are no heir-coheirs over $(\mathbb{R}, <)$ for instance.

Finding coheirs over models is trivial, but finding heir-coheirs can be hard. There are no heir-coheirs over $(\mathbb{R}, <)$ for instance.

The standard approach is this:

Fact

If $\mathcal U$ is a coheir over M and $N \succ M$ is a sufficiently saturated elementary extension, then $\mathcal U$ is an heir-coheir over N.

Finding coheirs over models is trivial, but finding heir-coheirs can be hard. There are no heir-coheirs over $(\mathbb{R}, <)$ for instance.

The standard approach is this:

Fact

If \mathcal{U} is a coheir over M and $N \succ M$ is a sufficiently saturated elementary extension, then \mathcal{U} is an heir-coheir over N.

This is important for the development of NTP_2 but is seemingly incompatible with the way coheirs are used in $NSOP_1$ (delicately building two coheirs extending the same type).

Finding coheirs over models is trivial, but finding heir-coheirs can be hard. There are no heir-coheirs over $(\mathbb{R}, <)$ for instance.

The standard approach is this:

Fact

If \mathcal{U} is a coheir over M and $N \succ M$ is a sufficiently saturated elementary extension, then \mathcal{U} is an heir-coheir over N.

This is important for the development of NTP_2 but is seemingly incompatible with the way coheirs are used in $NSOP_1$ (delicately building two coheirs extending the same type).

There are many heir-coheirs over $(\mathbb{Q},<)$ (any non-realized cut). Is this generalizable?

Let M be a countable model of a countable theory that is a little bit saturated (computable saturation is more than enough).

Let M be a countable model of a countable theory that is a little bit saturated (computable saturation is more than enough).

Proposition (H.)

There is a comeager set X of non-realized types over M such that any coheir extending a type in X is an heir-coheir.

Let M be a countable model of a countable theory that is a little bit saturated (computable saturation is more than enough).

Proposition (H.)

There is a comeager set X of non-realized types over M such that any coheir extending a type in X is an heir-coheir.

Proof sketch.

With a finite approximation $\psi(x)$ of the type we are building generically, look to see if there is a b in the monster such that $\psi(x) \wedge \varphi(x,b)$ has infinitely many realizations in M.

Let M be a countable model of a countable theory that is a little bit saturated (computable saturation is more than enough).

Proposition (H.)

There is a comeager set X of non-realized types over M such that any coheir extending a type in X is an heir-coheir.

Proof sketch.

With a finite approximation $\psi(x)$ of the type we are building generically, look to see if there is a b in the monster such that $\psi(x) \wedge \varphi(x,b)$ has infinitely many realizations in M. Our little bit of saturation says that there's a $c \in M$ such that $\psi(x) \wedge \varphi(x,c)$ has infinitely many realizations in M. Commit to this as an approximation of our type.

Let M be a countable model of a countable theory that is a little bit saturated (computable saturation is more than enough).

Proposition (H.)

There is a comeager set X of non-realized types over M such that any coheir extending a type in X is an heir-coheir.

Proof sketch.

With a finite approximation $\psi(x)$ of the type we are building generically, look to see if there is a b in the monster such that $\psi(x) \wedge \varphi(x,b)$ has infinitely many realizations in M. Our little bit of saturation says that there's a $c \in M$ such that $\psi(x) \wedge \varphi(x,c)$ has infinitely many realizations in M. Commit to this as an approximation of our type.

Argue that if \mathcal{U} extends the type we built and a realizes \mathcal{U} over Mb, then every formula in the type of b over Ma is already realized in M by construction.

The miniaturized argument as a blueprint for CTP

That proof is a forcing argument: We have a set of conditions that we need to satisfy and we are free to satisfy them generically.

The miniaturized argument as a blueprint for CTP

That proof is a forcing argument: We have a set of conditions that we need to satisfy and we are free to satisfy them generically.

The comb tree property (even on $2^{<\omega}$ rather than $\omega^{<\omega}$) gives you precisely what you need to generically build an heir-coheir $\mathcal U$ that is 'shadowed' by a coheir $\mathcal V$ such that the given formula divides along $\mathcal V$ but not along $\mathcal U$.

Definition

A set $X\subseteq 2^{<\omega}$ is dense above σ if for every τ extending σ , there is a $\mu\in X$ extending τ . X is somewhere dense if it is dense above some σ .

Definition

A set $X\subseteq 2^{<\omega}$ is dense above σ if for every τ extending σ , there is a $\mu\in X$ extending τ . X is somewhere dense if it is dense above some σ .

Fact

If $X \cup Y$ is dense above σ , then either X is dense above σ or there is a τ extending σ such that Y is dense above τ .

Definition

A set $X\subseteq 2^{<\omega}$ is dense above σ if for every τ extending σ , there is a $\mu\in X$ extending τ . X is somewhere dense if it is dense above some σ .

Fact

If $X \cup Y$ is dense above σ , then either X is dense above σ or there is a τ extending σ such that Y is dense above τ .

Proof.

Assume X is not dense above σ , then there is a τ extending σ such that X contains no elements extending τ .

Definition

A set $X\subseteq 2^{<\omega}$ is dense above σ if for every τ extending σ , there is a $\mu\in X$ extending τ . X is somewhere dense if it is dense above some σ .

Fact

If $X \cup Y$ is dense above σ , then either X is dense above σ or there is a τ extending σ such that Y is dense above τ .

Proof.

Assume X is not dense above σ , then there is a τ extending σ such that X contains no elements extending τ . But then since $X \cup Y$ is dense above σ , it is also dense above τ , whereby Y is dense above τ .

Suppose we have a CTP tree $(b_{\sigma})_{\sigma \in 2^{<\omega}}$ (for the formula $\varphi(x,y)$) in a mildly saturated countable model M.

Suppose we have a CTP tree $(b_{\sigma})_{\sigma\in 2^{<\omega}}$ (for the formula $\varphi(x,y)$) in a mildly saturated countable model M. We can generically build a path $(\sigma_i)_{i<\omega}$ of elements of $2^{<\omega}$ and a filter $\mathcal F$ on the tree $b_{\in 2^{<\omega}}$ such that following hold:

Suppose we have a CTP tree $(b_{\sigma})_{\sigma\in 2^{<\omega}}$ (for the formula $\varphi(x,y)$) in a mildly saturated countable model M. We can generically build a path $(\sigma_i)_{i<\omega}$ of elements of $2^{<\omega}$ and a filter $\mathcal F$ on the tree $b_{\in 2^{<\omega}}$ such that following hold:

■ For each i, σ_{i+1} extends $\sigma_i \frown 1$.

Suppose we have a CTP tree $(b_{\sigma})_{\sigma \in 2^{<\omega}}$ (for the formula $\varphi(x,y)$) in a mildly saturated countable model M. We can generically build a path $(\sigma_i)_{i<\omega}$ of elements of $2^{<\omega}$ and a filter $\mathcal F$ on the tree $b_{\in 2^{<\omega}}$ such that following hold:

- For each i, σ_{i+1} extends $\sigma_i \frown 1$.
- For each $X \in \mathcal{F}$, there is an i such that $\{b_{\tau} \in X : \tau \succeq \sigma_i\}$ is dense above σ_i and is in \mathcal{F} .

Suppose we have a CTP tree $(b_{\sigma})_{\sigma\in 2^{<\omega}}$ (for the formula $\varphi(x,y)$) in a mildly saturated countable model M. We can generically build a path $(\sigma_i)_{i<\omega}$ of elements of $2^{<\omega}$ and a filter $\mathcal F$ on the tree $b_{\in 2^{<\omega}}$ such that following hold:

- For each i, σ_{i+1} extends $\sigma_i \frown 1$.
- For each $X \in \mathcal{F}$, there is an i such that $\{b_{\tau} \in X : \tau \succeq \sigma_i\}$ is dense above σ_i and is in \mathcal{F} .
- If $\psi(x,c)$ is an M-formula (with c in the monster) such that $\{b_{\sigma}: \psi(b_{\sigma},c)\}$ has somewhere dense intersection with every element of \mathcal{F} , then there is a $d \in M$ such that $\{b_{\sigma}: \psi(b_{\sigma},d)\} \in \mathcal{F}$.

The second bullet point now ensures that

$$\mathcal{F} \cup \left\{ \bigcup_{i < \omega} (\mathsf{cone above} \ \sigma_i \frown 0) \right\}$$

generates a non-trivial filter,

The second bullet point now ensures that

$$\mathcal{F} \cup \left\{ \bigcup_{i < \omega} (\mathsf{cone above} \ \sigma_i \frown \mathsf{0}) \right\}$$

generates a non-trivial filter, which can be extended to an ultrafilter ${\cal U}$ whose elements are all somewhere dense.

The second bullet point now ensures that

$$\mathcal{F} \cup \left\{ \bigcup_{i < \omega} (\mathsf{cone\ above}\ \sigma_i \frown \mathsf{0}) \right\}$$

generates a non-trivial filter, which can be extended to an ultrafilter $\mathcal U$ whose elements are all somewhere dense.

The third bullet point ensures that ${\cal U}$ is in fact an heir-coheir

The second bullet point now ensures that

$$\mathcal{F} \cup \left\{ \bigcup_{i < \omega} (\mathsf{cone above} \ \sigma_i \frown \mathsf{0}) \right\}$$

generates a non-trivial filter, which can be extended to an ultrafilter $\mathcal U$ whose elements are all somewhere dense.

The third bullet point ensures that \mathcal{U} is in fact an heir-coheir and the extra set added to \mathcal{F} ensures that $\varphi(x,y)$ does not divide along \mathcal{U} .

The second bullet point now ensures that

$$\mathcal{F} \cup \left\{ \bigcup_{i < \omega} (\mathsf{cone above} \ \sigma_i \frown \mathsf{0}) \right\}$$

generates a non-trivial filter, which can be extended to an ultrafilter $\mathcal U$ whose elements are all somewhere dense.

The third bullet point ensures that \mathcal{U} is in fact an heir-coheir and the extra set added to \mathcal{F} ensures that $\varphi(x,y)$ does not divide along \mathcal{U} .

Finally, let V be any non-principal ultrafilter on $\{b_{\sigma_i}: i < \omega\}$.

The second bullet point now ensures that

$$\mathcal{F} \cup \left\{ \bigcup_{i < \omega} (\mathsf{cone above} \ \sigma_i \frown \mathsf{0}) \right\}$$

generates a non-trivial filter, which can be extended to an ultrafilter $\mathcal U$ whose elements are all somewhere dense.

The third bullet point ensures that \mathcal{U} is in fact an heir-coheir and the extra set added to \mathcal{F} ensures that $\varphi(x,y)$ does not divide along \mathcal{U} .

Finally, let \mathcal{V} be any non-principal ultrafilter on $\{b_{\sigma_i}: i < \omega\}$. By construction, $\varphi(x,y)$ will divide along \mathcal{V} .

The second bullet point now ensures that

$$\mathcal{F} \cup \left\{ \bigcup_{i < \omega} (\mathsf{cone\ above\ } \sigma_i \frown \mathsf{0}) \right\}$$

generates a non-trivial filter, which can be extended to an ultrafilter ${\cal U}$ whose elements are all somewhere dense.

The third bullet point ensures that \mathcal{U} is in fact an heir-coheir and the extra set added to \mathcal{F} ensures that $\varphi(x,y)$ does not divide along \mathcal{U} .

Finally, let $\mathcal V$ be any non-principal ultrafilter on $\{b_{\sigma_i}:i<\omega\}$. By construction, $\varphi(x,y)$ will divide along $\mathcal V$. Furthermore, the third bullet point will ensure that $\mathcal U$ and $\mathcal V$ extend the same type over M, so we have the required failure of Kim's lemma for coheirs and heir-coheirs.

Thank you