Forcing with model-theoretic trees

James Hanson
University of Maryland
October 24, 2023
University of Maryland Logic Seminar

The tree property in model theory

A formula $\varphi(x, y)$ has the k-tree property if there is a tree $\left(c_{\sigma}\right)_{\sigma \in \omega<\omega}$ of parameters such that

- paths are consistent: $\left\{\varphi\left(x, c_{\alpha \mid n}\right): n<\omega\right\}$ for $\alpha \in \omega^{\omega}$,
- siblings are k-inconsistent: $\left\{\varphi\left(x, c_{\sigma \frown n}\right): n<\omega\right\}$.

The tree property in model theory

A formula $\varphi(x, y)$ has the k-tree property if there is a tree $\left(c_{\sigma}\right)_{\sigma \in \omega<\omega}$ of parameters such that

- paths are consistent: $\left\{\varphi\left(x, c_{\alpha \mid n}\right): n<\omega\right\}$ for $\alpha \in \omega^{\omega}$,
- siblings are k-inconsistent: $\left\{\varphi\left(x, c_{\sigma \frown n}\right): n<\omega\right\}$.

Example $\varphi(x, a, b)=(a<x<b)$ with $c=a b$ in $(\mathbb{Q},<)$:

The tree property in model theory

A formula $\varphi(x, y)$ has the k-tree property if there is a tree $\left(c_{\sigma}\right)_{\sigma \in \omega<\omega}$ of parameters such that

- paths are consistent: $\left\{\varphi\left(x, c_{\alpha \mid n}\right): n<\omega\right\}$ for $\alpha \in \omega^{\omega}$,
- siblings are k-inconsistent: $\left\{\varphi\left(x, c_{\sigma \frown n}\right): n<\omega\right\}$.

Example $\varphi(x, a, b)=(a<x<b)$ with $c=a b$ in $(\mathbb{Q},<)$:

The tree property in model theory

A formula $\varphi(x, y)$ has the k-tree property if there is a tree $\left(c_{\sigma}\right)_{\sigma \in \omega<\omega}$ of parameters such that

- paths are consistent: $\left\{\varphi\left(x, c_{\alpha \mid n}\right): n<\omega\right\}$ for $\alpha \in \omega^{\omega}$,
- Siblings are k-inconsistent: $\left\{\varphi\left(x, c_{\sigma \frown n}\right): n<\omega\right\}$.

Example $\varphi(x, a, b)=(a<x<b)$ with $c=a b$ in $(\mathbb{Q},<)$:

The tree property in model theory

A formula $\varphi(x, y)$ has the k-tree property if there is a tree $\left(c_{\sigma}\right)_{\sigma \in \omega<\omega}$ of parameters such that

- paths are consistent: $\left\{\varphi\left(x, c_{\alpha \mid n}\right): n<\omega\right\}$ for $\alpha \in \omega^{\omega}$,

■ siblings are k-inconsistent: $\left\{\varphi\left(x, c_{\sigma \frown n}\right): n<\omega\right\}$.

Example $\varphi(x, a, b)=(a<x<b)$ with $c=a b$ in $(\mathbb{Q},<)$:

The tree in the tree property

$$
\omega^{<\omega}
$$

The tree in the tree property

Paths are consistent

The tree in the tree property

Paths are consistent

The tree in the tree property

Paths are consistent

The tree property of the first kind

(Extremely revisionist definition) A formula $\varphi(x, c)$ has the k-tree property of the first kind

The tree property of the first kind

(Extremely revisionist definition) A formula $\varphi(x, c)$ has the k-tree property of the first kind or $k-S O P_{1}$

The tree property of the first kind

(Extremely revisionist definition) A formula $\varphi(x, c)$ has the k-tree property of the first kind or $k-S O P_{1}$ if there is a tree $\left(c_{\sigma}\right)_{\sigma \in \omega<\omega}$ of parameters such that

The tree property of the first kind

(Extremely revisionist definition) A formula $\varphi(x, c)$ has the k-tree property of the first kind or $k-S O P_{1}$ if there is a tree $\left(c_{\sigma}\right)_{\sigma \in \omega<\omega}$ of parameters such that

- paths are consistent: $\left\{\varphi\left(x, c_{\alpha \mid n}\right): n<\omega\right\}$ for $\alpha \in \omega^{\omega}$,

The tree property of the first kind

(Extremely revisionist definition) A formula $\varphi(x, c)$ has the k-tree property of the first kind or $k-S O P_{1}$ if there is a tree $\left(c_{\sigma}\right)_{\sigma \in \omega<\omega}$ of parameters such that

- paths are consistent: $\left\{\varphi\left(x, c_{\alpha \mid n}\right): n<\omega\right\}$ for $\alpha \in \omega^{\omega}$,

■ for any short-toothed right-comb $X \subset \omega^{<\omega},\left\{\varphi\left(x, c_{\sigma}\right): \sigma \in X\right\}$ is k-inconsistent.

The tree property of the first kind

(Extremely revisionist definition) A formula $\varphi(x, c)$ has the k-tree property of the first kind or $k-S O P_{1}$ if there is a tree $\left(c_{\sigma}\right)_{\sigma \in \omega<\omega}$ of parameters such that

- paths are consistent: $\left\{\varphi\left(x, c_{\alpha \mid n}\right): n<\omega\right\}$ for $\alpha \in \omega^{\omega}$,

■ for any short-toothed right-comb $X \subset \omega^{<\omega},\left\{\varphi\left(x, c_{\sigma}\right): \sigma \in X\right\}$ is k-inconsistent.

Short-toothed right-combs are defined inductively:

The tree property of the first kind

(Extremely revisionist definition) A formula $\varphi(x, c)$ has the k-tree property of the first kind or $k-S O P_{1}$ if there is a tree $\left(c_{\sigma}\right)_{\sigma \in \omega<\omega}$ of parameters such that

- paths are consistent: $\left\{\varphi\left(x, c_{\alpha \mid n}\right): n<\omega\right\}$ for $\alpha \in \omega^{\omega}$,

■ for any short-toothed right-comb $X \subset \omega^{<\omega},\left\{\varphi\left(x, c_{\sigma}\right): \sigma \in X\right\}$ is k-inconsistent.

Short-toothed right-combs are defined inductively:

- \varnothing is a short-toothed right-comb.

The tree property of the first kind

(Extremely revisionist definition) A formula $\varphi(x, c)$ has the k-tree property of the first kind or $k-S O P_{1}$ if there is a tree $\left(c_{\sigma}\right)_{\sigma \in \omega<\omega}$ of parameters such that

- paths are consistent: $\left\{\varphi\left(x, c_{\alpha \mid n}\right): n<\omega\right\}$ for $\alpha \in \omega^{\omega}$,

■ for any short-toothed right-comb $X \subset \omega^{<\omega},\left\{\varphi\left(x, c_{\sigma}\right): \sigma \in X\right\}$ is k-inconsistent.

Short-toothed right-combs are defined inductively:
■ \varnothing is a short-toothed right-comb.
■ X is a short-toothed right-comb, every element of X extends $\sigma \frown j$, and $i<j$, then $X \cup\{\sigma \frown i\}$ is a short-toothed right-comb.

A short-toothed right-comb

$(\mathbb{Q},<)$ has $2-$ SOP $_{1}$

In our tree in $(\mathbb{Q},<)$, any pair of incomparable elements are inconsistent.

Hence any short-toothed right-comb is 2-inconsistent.

Drawing a new line on Conant's map

Examples:

Drawing a new line on Conant's map

Drawing a new line on Conant's map

Drawing a new line on Conant's map

Examples:

Simple: Generic graph

NSOP $_{1}$: Generic binary function

NTP ${ }_{2}$: Generic linearly ordered graph

Drawing a new line on Conant's map

Examples:

Simple: Generic graph

NSOP $_{1}$: Generic binary function

NTP ${ }_{2}$: Generic linearly ordered graph

Drawing a new line on Conant's map

Examples:

Simple: Generic graph

NSOP $_{1}$: Generic binary function

NTP ${ }_{2}$: Generic linearly ordered graph

N?TP: Generic linear order + binary function

Coheirs

Coheirs

Given a structure M we can use an ultrafilter \mathcal{U} on M (an M-coheir) to 'generate' a sequence of new elements (in the monster model).

Coheirs

Given a structure M we can use an ultrafilter \mathcal{U} on M (an M-coheir) to 'generate' a sequence of new elements (in the monster model).

Example $(\mathbb{Q},<)$ with ultrafilter concentrating at $+\infty$:

Coheirs

Given a structure M we can use an ultrafilter \mathcal{U} on M (an M-coheir) to 'generate' a sequence of new elements (in the monster model).

Example $(\mathbb{Q},<)$ with ultrafilter concentrating at $+\infty$:

Coheirs

Given a structure M we can use an ultrafilter \mathcal{U} on M (an M-coheir) to 'generate' a sequence of new elements (in the monster model).

Example $(\mathbb{Q},<)$ with ultrafilter concentrating at $+\infty$:

Coheirs

Given a structure M we can use an ultrafilter \mathcal{U} on M (an M-coheir) to 'generate' a sequence of new elements (in the monster model).

Example $(\mathbb{Q},<)$ with ultrafilter concentrating at $+\infty$:

- a_{i+1} is what \mathcal{U} 'looks like' to \mathbb{Q} and a_{0}, \ldots, a_{i}.

Coheirs

Given a structure M we can use an ultrafilter \mathcal{U} on M (an M-coheir) to 'generate' a sequence of new elements (in the monster model).

Example $(\mathbb{Q},<)$ with ultrafilter concentrating at $+\infty$:

- a_{i+1} is what \mathcal{U} 'looks like' to \mathbb{Q} and a_{0}, \ldots, a_{i}.
- a_{i+1} realizes \mathcal{U} over $\mathbb{Q} \cup\left\{a_{0}, \ldots, a_{i}\right\}$.

Coheirs

Given a structure M we can use an ultrafilter \mathcal{U} on M (an M-coheir) to 'generate' a sequence of new elements (in the monster model).

Example $(\mathbb{Q},<)$ with ultrafilter concentrating at $+\infty$:

- a_{i+1} is what \mathcal{U} 'looks like' to \mathbb{Q} and a_{0}, \ldots, a_{i}.
- a_{i+1} realizes \mathcal{U} over $\mathbb{Q} \cup\left\{a_{0}, \ldots, a_{i}\right\}$.
- a_{0}, a_{1}, \ldots is the Morley sequence generated by \mathcal{U}.

SOP_{1} in terms of coheirs

Definition

Given a coheir \mathcal{U} over a model M, a formula $\varphi(x, y) k$-divides along \mathcal{U} if whenever b_{0}, b_{1}, \ldots is a Morley sequence generated by \mathcal{U}, $\left\{\varphi\left(x, b_{i}\right): i<\omega\right\}$ is k-inconsistent.

SOP_{1} in terms of coheirs

Definition

Given a coheir \mathcal{U} over a model M, a formula $\varphi(x, y) k$-divides along \mathcal{U} if whenever b_{0}, b_{1}, \ldots is a Morley sequence generated by \mathcal{U}, $\left\{\varphi\left(x, b_{i}\right): i<\omega\right\}$ is k-inconsistent.

Theorem (Kaplan, Ramsey)

T has SOP_{1} if and only if there is a model M, two coheirs \mathcal{U} and \mathcal{V} (extending the same type), and a formula $\varphi(x, y)$ such that $\varphi(x, y)$ divides along \mathcal{U} but not along \mathcal{V}.

Coheir witnesses of SOP_{1} in $(\mathbb{Q},<)$

Two non-trivial coheirs of the 2-type living in the cut at π over \mathbb{Q} :
$\mathbb{Q}<\pi$

Coheir witnesses of SOP_{1} in $(\mathbb{Q},<)$

Two non-trivial coheirs of the 2-type living in the cut at π over \mathbb{Q} :

- $\mathcal{U}_{\text {pinch }}$ corresponding to two elements 'pinching' the cut (coming in from both sides).

Coheir witnesses of SOP_{1} in $(\mathbb{Q},<)$

Two non-trivial coheirs of the 2-type living in the cut at π over \mathbb{Q} :

- $\mathcal{U}_{\text {pinch }}$ corresponding to two elements 'pinching' the cut (coming in from both sides).
- $\mathcal{U}_{\text {below }}$ corresponding to two elements sliding towards the cut from below.

Coheir witnesses of SOP_{1} in $(\mathbb{Q},<)$

Two non-trivial coheirs of the 2-type living in the cut at π over \mathbb{Q} :

- $\mathcal{U}_{\text {pinch }}$ corresponding to two elements 'pinching' the cut (coming in from both sides).
- $\mathcal{U}_{\text {below }}$ corresponding to two elements sliding towards the cut from below.

The formula $(a<x<b)$ divides along $\mathcal{U}_{\text {below }}$ but not along $\mathcal{U}_{\text {pinch }}$.

$$
\mathbb{Q}<\pi
$$

Coheir witnesses of SOP_{1} in $(\mathbb{Q},<)$

Two non-trivial coheirs of the 2-type living in the cut at π over \mathbb{Q} :

- $\mathcal{U}_{\text {pinch }}$ corresponding to two elements 'pinching' the cut (coming in from both sides).
- $\mathcal{U}_{\text {below }}$ corresponding to two elements sliding towards the cut from below.

The formula $(a<x<b)$ divides along $\mathcal{U}_{\text {below }}$ but not along $\mathcal{U}_{\text {pinch }}$.
$\mathbb{Q}<\pi$ a_{0} b_{0}

Morley sequence generated by $\mathcal{U}_{\text {pinch }}$
Consistent

Coheir witnesses of SOP_{1} in $(\mathbb{Q},<)$

Two non-trivial coheirs of the 2-type living in the cut at π over \mathbb{Q} :

- $\mathcal{U}_{\text {pinch }}$ corresponding to two elements 'pinching' the cut (coming in from both sides).
- $\mathcal{U}_{\text {below }}$ corresponding to two elements sliding towards the cut from below.

The formula $(a<x<b)$ divides along $\mathcal{U}_{\text {below }}$ but not along $\mathcal{U}_{\text {pinch }}$.
$\mathbb{Q}<\pi$

Morley sequence generated by $\mathcal{U}_{\text {below }}$ 2-inconsistent

Heir-coheirs

$\mathcal{U}_{\text {below }}$ has a special property. The Morley sequence it generates
$\mathbb{Q}<\pi$

Generated by $\mathcal{U}_{\text {below }}$

Heir-coheirs

$\mathcal{U}_{\text {below }}$ has a special property. The Morley sequence it generates
$\mathbb{Q}<\pi$

Generated by $\mathcal{U}_{\text {below }}$
is 'the same' as the Morley sequence generated by a different coheir backwards:
$\mathbb{Q}<\pi$ $d_{0} \quad c_{0}$

Generated by $\mathcal{U}_{\text {above }}$

Heir-coheirs

$\mathcal{U}_{\text {below }}$ has a special property. The Morley sequence it generates
$\mathbb{Q}<\pi$

Generated by $\mathcal{U}_{\text {below }}$
is 'the same' as the Morley sequence generated by a different coheir backwards:
$\mathbb{Q}<\pi$

Generated by $\mathcal{U}_{\text {above }}$

This is non-trivial. $\mathcal{U}_{\text {pinch }}$ does not have this property.

TP_{2} in terms of heir-coheirs

Definition

\mathcal{U} is an M-heir-coheir if whenever b realizes \mathcal{U} over $M \cup A$, there is an M-coheir \mathcal{V} such that A realizes \mathcal{V} over $M \cup b$.

TP_{2} in terms of heir-coheirs

Definition

\mathcal{U} is an M-heir-coheir if whenever b realizes \mathcal{U} over $M \cup A$, there is an M-coheir \mathcal{V} such that A realizes \mathcal{V} over $M \cup b$.

A formula $\varphi(x, b)$ k-divides over M if there is a sequence $\left(b_{i}\right)_{i<\omega}$ of realizations of the type of b over M such that $\left\{\varphi\left(x, b_{i}\right): i<\omega\right\}$ is k-inconsistent.

TP_{2} in terms of heir-coheirs

Definition

\mathcal{U} is an M-heir-coheir if whenever b realizes \mathcal{U} over $M \cup A$, there is an M-coheir \mathcal{V} such that A realizes \mathcal{V} over $M \cup b$.

A formula $\varphi(x, b)$ k-divides over M if there is a sequence $\left(b_{i}\right)_{i<\omega}$ of realizations of the type of b over M such that $\left\{\varphi\left(x, b_{i}\right): i<\omega\right\}$ is k-inconsistent.

Theorem (Chernikov, Kaplan)

T has TP_{2} if and only if there is a model M, a formula $\varphi(x, b)$, and an M-heir-coheir \mathcal{U} extending the type of b over M such that $\varphi(x, b)$ divides over M but does not divide along \mathcal{U}.

TP_{2} in terms of heir-coheirs

Definition

\mathcal{U} is an M-heir-coheir if whenever b realizes \mathcal{U} over $M \cup A$, there is an M-coheir \mathcal{V} such that A realizes \mathcal{V} over $M \cup b$.

A formula $\varphi(x, b)$ k-divides over M if there is a sequence $\left(b_{i}\right)_{i<\omega}$ of realizations of the type of b over M such that $\left\{\varphi\left(x, b_{i}\right): i<\omega\right\}$ is k-inconsistent.

Theorem (Chernikov, Kaplan)

T has TP_{2} if and only if there is a model M, a formula $\varphi(x, b)$, and an M-heir-coheir \mathcal{U} extending the type of b over M such that $\varphi(x, b)$ divides over M but does not divide along \mathcal{U}.

DLO (theory of $(\mathbb{Q},<))$ is NTP_{2}.

N?TP via a new Kim's lemma?

Kruckman and Ramsey suggested formulating N?TP via a mutual generalization of the Kim's lemmas for NSOP $_{1}$ and NTP $_{2}$.

N?TP via a new Kim's lemma?

Kruckman and Ramsey suggested formulating N?TP via a mutual generalization of the Kim's lemmas for NSOP $_{1}$ and NTP $_{2}$.

- NSOP_{1} : If $\varphi(x, b)$ divides along some coheir, then it divides along every coheir.

N?TP via a new Kim's lemma?

Kruckman and Ramsey suggested formulating N?TP via a mutual generalization of the Kim's lemmas for NSOP_{1} and NTP_{2}.

■ NSOP_{1} : If $\varphi(x, b)$ divides along some coheir, then it divides along every coheir.

- NTP $_{2}$: If $\varphi(x, b)$ divides, then it divides along every heir-coheir.

N?TP via a new Kim's lemma?

Kruckman and Ramsey suggested formulating N?TP via a mutual generalization of the Kim's lemmas for NSOP $_{1}$ and NTP $_{2}$.

■ NSOP_{1} : If $\varphi(x, b)$ divides along some coheir, then it divides along every coheir.

- NTP $_{2}$: If $\varphi(x, b)$ divides, then it divides along every heir-coheir. Lead them to the bizarre tree property or BTP (uses a weakening of heir-coheirdom).

N?TP via a new Kim's lemma?

Kruckman and Ramsey suggested formulating N?TP via a mutual generalization of the Kim's lemmas for NSOP $_{1}$ and NTP $_{2}$.

- NSOP_{1} : If $\varphi(x, b)$ divides along some coheir, then it divides along every coheir.
- NTP $_{2}$: If $\varphi(x, b)$ divides, then it divides along every heir-coheir.

Lead them to the bizarre tree property or BTP (uses a weakening of heir-coheirdom).

Their philosophy also suggests the following:

N?TP via a new Kim's lemma?

Kruckman and Ramsey suggested formulating N?TP via a mutual generalization of the Kim's lemmas for NSOP $_{1}$ and NTP $_{2}$.

- NSOP_{1} : If $\varphi(x, b)$ divides along some coheir, then it divides along every coheir.
- NTP ${ }_{2}$: If $\varphi(x, b)$ divides, then it divides along every heir-coheir. Lead them to the bizarre tree property or BTP (uses a weakening of heir-coheirdom).

Their philosophy also suggests the following:
? N?TP: If $\varphi(x, b)$ divides along some coheir, then it divides along every heir-coheir?

Combs

Combs

A formula $\varphi(x, c)$ has the k-comb tree property or k-CTP if there is a tree $\left(c_{\sigma}\right)_{\sigma \in \omega<\omega}$ of parameters such that

Combs

A formula $\varphi(x, c)$ has the k-comb tree property or k-CTP if there is a tree $\left(c_{\sigma}\right)_{\sigma \in \omega<\omega}$ of parameters such that

- paths are k-inconsistent: $\left\{\varphi\left(x, c_{\alpha \mid n}\right): n<\omega\right\}$ for $\alpha \in \omega^{\omega}$,

Combs

A formula $\varphi(x, c)$ has the k-comb tree property or k-CTP if there is a tree $\left(c_{\sigma}\right)_{\sigma \in \omega<\omega}$ of parameters such that

- paths are k-inconsistent: $\left\{\varphi\left(x, c_{\alpha \mid n}\right): n<\omega\right\}$ for $\alpha \in \omega^{\omega}$,

■ for any right-comb $X \subset \omega^{<\omega},\left\{\varphi\left(x, c_{\sigma}\right): \sigma \in X\right\}$ is consistent. (Note the switcheroo.)

Combs

A formula $\varphi(x, c)$ has the k-comb tree property or k-CTP if there is a tree $\left(c_{\sigma}\right)_{\sigma \in \omega<\omega}$ of parameters such that

- paths are k-inconsistent: $\left\{\varphi\left(x, c_{\alpha \mid n}\right): n<\omega\right\}$ for $\alpha \in \omega^{\omega}$,

■ for any right-comb $X \subset \omega^{<\omega},\left\{\varphi\left(x, c_{\sigma}\right): \sigma \in X\right\}$ is consistent. (Note the switcheroo.)
Right-combs are defined inductively:

Combs

A formula $\varphi(x, c)$ has the k-comb tree property or k-CTP if there is a tree $\left(c_{\sigma}\right)_{\sigma \in \omega<\omega}$ of parameters such that

- paths are k-inconsistent: $\left\{\varphi\left(x, c_{\alpha \mid n}\right): n<\omega\right\}$ for $\alpha \in \omega^{\omega}$,

■ for any right-comb $X \subset \omega^{<\omega},\left\{\varphi\left(x, c_{\sigma}\right): \sigma \in X\right\}$ is consistent.
(Note the switcheroo.)
Right-combs are defined inductively:

- \varnothing is a right-comb.

Combs

A formula $\varphi(x, c)$ has the k-comb tree property or k-CTP if there is a tree $\left(c_{\sigma}\right)_{\sigma \in \omega<\omega}$ of parameters such that

- paths are k-inconsistent: $\left\{\varphi\left(x, c_{\alpha \mid n}\right): n<\omega\right\}$ for $\alpha \in \omega^{\omega}$,
- for any right-comb $X \subset \omega^{<\omega},\left\{\varphi\left(x, c_{\sigma}\right): \sigma \in X\right\}$ is consistent.
(Note the switcheroo.)
Right-combs are defined inductively:
- \varnothing is a right-comb.

■ X is a right-comb, every element of X extends $\sigma \frown j$, and τ extends $\sigma \frown i$ for some $i<j$, then $X \cup\{\tau\}$ is a right-comb.

Combs

A formula $\varphi(x, c)$ has the k-comb tree property or k-CTP if there is a tree $\left(c_{\sigma}\right)_{\sigma \in \omega<\omega}$ of parameters such that

- paths are k-inconsistent: $\left\{\varphi\left(x, c_{\alpha \uparrow n}\right): n<\omega\right\}$ for $\alpha \in \omega^{\omega}$,
- for any right-comb $X \subset \omega^{<\omega},\left\{\varphi\left(x, c_{\sigma}\right): \sigma \in X\right\}$ is consistent.
(Note the switcheroo.)
Right-combs are defined inductively:
- \varnothing is a right-comb.

■ X is a right-comb, every element of X extends $\sigma \frown j$, and τ extends $\sigma \frown i$ for some $i<j$, then $X \cup\{\tau\}$ is a right-comb.

Mutchnik established the following in his proof that $\mathrm{NSOP}_{1}=\mathrm{NSOP}_{2}$.

Theorem (Mutchnik)

The above condition without the switcheroo is equivalent to SOP_{1}.

A right-comb

Characterization of CTP

Theorem (H.)

A theory has k-CTP if and only if there is a model M, a formula $\varphi(x, b)$, and an M-heir-coheir \mathcal{U} and an M-coheir \mathcal{V} extending the type of b over M such that $\varphi(x, b) k$-divides along \mathcal{V} but does not divide along \mathcal{U}.

Characterization of CTP

Theorem (H.)

A theory has k-CTP if and only if there is a model M, a formula $\varphi(x, b)$, and an M-heir-coheir \mathcal{U} and an M-coheir \mathcal{V} extending the type of b over M such that $\varphi(x, b) k$-divides along \mathcal{V} but does not divide along \mathcal{U}.

The proof is entirely uniform in k, which leaves the following question.

Question

Does k-CTP imply 2-CTP?

Characterization of CTP

Theorem (H.)

A theory has k-CTP if and only if there is a model M, a formula $\varphi(x, b)$, and an M-heir-coheir \mathcal{U} and an M-coheir \mathcal{V} extending the type of b over M such that $\varphi(x, b) k$-divides along \mathcal{V} but does not divide along \mathcal{U}.

The proof is entirely uniform in k, which leaves the following question.

Question

Does k-CTP imply 2-CTP?
We also have the following alphabetically frustrating implication:

$$
\text { ATP } \Rightarrow \text { CTP } \Rightarrow \text { BTP }
$$

where the antichain tree property or ATP is another candidate for ?TP, introduced by Ahn and Kim.

What's special about heir-coheirs?

If \mathcal{U} is an M-heir-coheir and B is some configuration of realizations of \mathcal{U} over M, then we can find a clone B^{\prime} of B with the property that every element of B^{\prime} realizes \mathcal{U} over $M \cup B$.

What's special about heir-coheirs?

If \mathcal{U} is an M-heir-coheir and B is some configuration of realizations of \mathcal{U} over M, then we can find a clone B^{\prime} of B with the property that every element of B^{\prime} realizes \mathcal{U} over $M \cup B$.

What's special about heir-coheirs?

If \mathcal{U} is an M-heir-coheir and B is some configuration of realizations of \mathcal{U} over M, then we can find a clone B^{\prime} of B with the property that every element of B^{\prime} realizes \mathcal{U} over $M \cup B$.

CTP from heir-coheir \mathcal{U} and coheir \mathcal{V}

Realize $\mathcal{U} \bullet$

CTP from heir-coheir \mathcal{U} and coheir \mathcal{V}

Realize $\mathcal{U} \bullet$

CTP from heir-coheir \mathcal{U} and coheir \mathcal{V}

Realize $\mathcal{U} \bullet$

CTP from heir-coheir \mathcal{U} and coheir \mathcal{V}

CTP from heir-coheir \mathcal{U} and coheir \mathcal{V}

Super realize \mathcal{U}

CTP from heir-coheir \mathcal{U} and coheir \mathcal{V}

All paths are \mathcal{V} Morley sequences

CTP from heir-coheir \mathcal{U} and coheir \mathcal{V}

Use compactness to make the tree $\omega^{<\omega}$

Forcing

Whence do heir-coheirs come?

Finding coheirs over models is trivial, but finding heir-coheirs can be hard.

Whence do heir-coheirs come?

Finding coheirs over models is trivial, but finding heir-coheirs can be hard. There are no heir-coheirs over $(\mathbb{R},<)$ for instance.

Whence do heir-coheirs come?

Finding coheirs over models is trivial, but finding heir-coheirs can be hard. There are no heir-coheirs over $(\mathbb{R},<)$ for instance.

The standard approach is this:

Fact

If \mathcal{U} is a coheir over M and $N \succ M$ is a sufficiently saturated elementary extension, then \mathcal{U} is an heir-coheir over N.

Whence do heir-coheirs come?

Finding coheirs over models is trivial, but finding heir-coheirs can be hard. There are no heir-coheirs over $(\mathbb{R},<)$ for instance.

The standard approach is this:

Fact

If \mathcal{U} is a coheir over M and $N \succ M$ is a sufficiently saturated elementary extension, then \mathcal{U} is an heir-coheir over N.

This is important for the development of NTP 2 but is seemingly incompatible with the way coheirs are used in NSOP_{1} (delicately building two coheirs extending the same type).

Whence do heir-coheirs come?

Finding coheirs over models is trivial, but finding heir-coheirs can be hard. There are no heir-coheirs over $(\mathbb{R},<)$ for instance.

The standard approach is this:

Fact

If \mathcal{U} is a coheir over M and $N \succ M$ is a sufficiently saturated elementary extension, then \mathcal{U} is an heir-coheir over N.

This is important for the development of NTP 2 but is seemingly incompatible with the way coheirs are used in NSOP_{1} (delicately building two coheirs extending the same type).

There are many heir-coheirs over $(\mathbb{Q},<)$ (any non-realized cut). Is this generalizable?

Miniaturizing the saturation argument

Let M be a countable model of a countable theory that is a little bit saturated (computable saturation is more than enough).

Miniaturizing the saturation argument

Let M be a countable model of a countable theory that is a little bit saturated (computable saturation is more than enough).

Proposition (H.)

There is a comeager set X of non-realized types over M such that any coheir extending a type in X is an heir-coheir.

Miniaturizing the saturation argument

Let M be a countable model of a countable theory that is a little bit saturated (computable saturation is more than enough).

Proposition (H.)

There is a comeager set X of non-realized types over M such that any coheir extending a type in X is an heir-coheir.

Proof sketch.

With a finite approximation $\psi(x)$ of the type we are building generically, look to see if there is a b in the monster such that $\psi(x) \wedge \varphi(x, b)$ has infinitely many realizations in M.

Miniaturizing the saturation argument

Let M be a countable model of a countable theory that is a little bit saturated (computable saturation is more than enough).

Proposition (H.)

There is a comeager set X of non-realized types over M such that any coheir extending a type in X is an heir-coheir.

Proof sketch.

With a finite approximation $\psi(x)$ of the type we are building generically, look to see if there is a b in the monster such that $\psi(x) \wedge \varphi(x, b)$ has infinitely many realizations in M. Our little bit of saturation says that there's a $c \in M$ such that $\psi(x) \wedge \varphi(x, c)$ has infinitely many realizations in M. Commit to this as an approximation of our type.

Miniaturizing the saturation argument

Let M be a countable model of a countable theory that is a little bit saturated (computable saturation is more than enough).

Proposition (H.)

There is a comeager set X of non-realized types over M such that any coheir extending a type in X is an heir-coheir.

Proof sketch.

With a finite approximation $\psi(x)$ of the type we are building generically, look to see if there is a b in the monster such that $\psi(x) \wedge \varphi(x, b)$ has infinitely many realizations in M. Our little bit of saturation says that there's a $c \in M$ such that $\psi(x) \wedge \varphi(x, c)$ has infinitely many realizations in M. Commit to this as an approximation of our type.
Argue that if \mathcal{U} extends the type we built and a realizes \mathcal{U} over $M b$, then every formula in the type of b over $M a$ is already realized in M by construction.

The miniaturized argument as a blueprint for CTP

That proof is a forcing argument: We have a set of conditions that we need to satisfy and we are free to satisfy them generically.

The miniaturized argument as a blueprint for CTP

That proof is a forcing argument: We have a set of conditions that we need to satisfy and we are free to satisfy them generically.
The comb tree property (even on $2^{<\omega}$ rather than $\omega^{<\omega}$) gives you precisely what you need to generically build an heir-coheir \mathcal{U} that is 'shadowed' by a coheir \mathcal{V} such that the given formula divides along \mathcal{V} but not along \mathcal{U}.

The fundamental theorem of forcing

Definition

A set $X \subseteq 2^{<\omega}$ is dense above σ if for every τ extending σ, there is a $\mu \in X$ extending τ. X is somewhere dense if it is dense above some σ.

The fundamental theorem of forcing

Definition

A set $X \subseteq 2^{<\omega}$ is dense above σ if for every τ extending σ, there is a $\mu \in X$ extending τ. X is somewhere dense if it is dense above some σ.

Fact

If $X \cup Y$ is dense above σ, then either X is dense above σ or there is a τ extending σ such that Y is dense above τ.

The fundamental theorem of forcing

Definition

A set $X \subseteq 2^{<\omega}$ is dense above σ if for every τ extending σ, there is a $\mu \in X$ extending $\tau . X$ is somewhere dense if it is dense above some σ.

Fact

If $X \cup Y$ is dense above σ, then either X is dense above σ or there is a τ extending σ such that Y is dense above τ.

Proof.

Assume X is not dense above σ, then there is a τ extending σ such that X contains no elements extending τ.

The fundamental theorem of forcing

Definition

A set $X \subseteq 2^{<\omega}$ is dense above σ if for every τ extending σ, there is a $\mu \in X$ extending $\tau . X$ is somewhere dense if it is dense above some σ.

Fact

If $X \cup Y$ is dense above σ, then either X is dense above σ or there is a τ extending σ such that Y is dense above τ.

Proof.

Assume X is not dense above σ, then there is a τ extending σ such that X contains no elements extending τ. But then since $X \cup Y$ is dense above σ, it is also dense above τ, whereby Y is dense above τ.

Forcing with comb trees I

Suppose we have a CTP tree $\left(b_{\sigma}\right)_{\sigma \in 2<\omega}$ (for the formula $\varphi(x, y)$) in a mildly saturated countable model M.

Forcing with comb trees I

Suppose we have a CTP tree $\left(b_{\sigma}\right)_{\sigma \in 2<\omega}$ (for the formula $\varphi(x, y)$) in a mildly saturated countable model M. We can generically build a path $\left(\sigma_{i}\right)_{i<\omega}$ of elements of $2^{<\omega}$ and a filter \mathcal{F} on the tree $b_{\in 2<\omega}$ such that following hold:

Forcing with comb trees I

Suppose we have a CTP tree $\left(b_{\sigma}\right)_{\sigma \in 2<\omega}$ (for the formula $\varphi(x, y)$) in a mildly saturated countable model M. We can generically build a path $\left(\sigma_{i}\right)_{i<\omega}$ of elements of $2^{<\omega}$ and a filter \mathcal{F} on the tree $b_{\in 2<\omega}$ such that following hold:

■ For each i, σ_{i+1} extends $\sigma_{i} \frown 1$.

Forcing with comb trees I

Suppose we have a CTP tree $\left(b_{\sigma}\right)_{\sigma \in 2<\omega}$ (for the formula $\varphi(x, y)$) in a mildly saturated countable model M. We can generically build a path $\left(\sigma_{i}\right)_{i<\omega}$ of elements of $2^{<\omega}$ and a filter \mathcal{F} on the tree $b_{\in 2<\omega}$ such that following hold:

■ For each i, σ_{i+1} extends $\sigma_{i} \frown 1$.

- For each $X \in \mathcal{F}$, there is an i such that $\left\{b_{\tau} \in X: \tau \succeq \sigma_{i}\right\}$ is dense above σ_{i} and is in \mathcal{F}.

Forcing with comb trees I

Suppose we have a CTP tree $\left(b_{\sigma}\right)_{\sigma \in 2<\omega}$ (for the formula $\varphi(x, y)$) in a mildly saturated countable model M. We can generically build a path $\left(\sigma_{i}\right)_{i<\omega}$ of elements of $2^{<\omega}$ and a filter \mathcal{F} on the tree $b_{\in 2<\omega}$ such that following hold:

■ For each i, σ_{i+1} extends $\sigma_{i} \frown 1$.
■ For each $X \in \mathcal{F}$, there is an i such that $\left\{b_{\tau} \in X: \tau \succeq \sigma_{i}\right\}$ is dense above σ_{i} and is in \mathcal{F}.

- If $\psi(x, c)$ is an M-formula (with c in the monster) such that $\left\{b_{\sigma}: \psi\left(b_{\sigma}, c\right)\right\}$ has somewhere dense intersection with every element of \mathcal{F}, then there is a $d \in M$ such that $\left\{b_{\sigma}: \psi\left(b_{\sigma}, d\right)\right\} \in \mathcal{F}$.

Forcing with comb trees II

The second bullet point now ensures that

$$
\mathcal{F} \cup\left\{\bigcup_{i<\omega}\left(\text { cone above } \sigma_{i} \frown 0\right)\right\}
$$

generates a non-trivial filter,

Forcing with comb trees II

The second bullet point now ensures that

$$
\mathcal{F} \cup\left\{\bigcup_{i<\omega}\left(\text { cone above } \sigma_{i} \frown 0\right)\right\}
$$

generates a non-trivial filter, which can be extended to an ultrafilter \mathcal{U} whose elements are all somewhere dense.

Forcing with comb trees II

The second bullet point now ensures that

$$
\mathcal{F} \cup\left\{\bigcup_{i<\omega}\left(\text { cone above } \sigma_{i} \frown 0\right)\right\}
$$

generates a non-trivial filter, which can be extended to an ultrafilter \mathcal{U} whose elements are all somewhere dense.
The third bullet point ensures that \mathcal{U} is in fact an heir-coheir

Forcing with comb trees II

The second bullet point now ensures that

$$
\mathcal{F} \cup\left\{\bigcup_{i<\omega}\left(\text { cone above } \sigma_{i} \frown 0\right)\right\}
$$

generates a non-trivial filter, which can be extended to an ultrafilter \mathcal{U} whose elements are all somewhere dense.
The third bullet point ensures that \mathcal{U} is in fact an heir-coheir and the extra set added to \mathcal{F} ensures that $\varphi(x, y)$ does not divide along \mathcal{U}.

Forcing with comb trees II

The second bullet point now ensures that

$$
\mathcal{F} \cup\left\{\bigcup_{i<\omega}\left(\text { cone above } \sigma_{i} \frown 0\right)\right\}
$$

generates a non-trivial filter, which can be extended to an ultrafilter \mathcal{U} whose elements are all somewhere dense.
The third bullet point ensures that \mathcal{U} is in fact an heir-coheir and the extra set added to \mathcal{F} ensures that $\varphi(x, y)$ does not divide along \mathcal{U}. Finally, let \mathcal{V} be any non-principal ultrafilter on $\left\{b_{\sigma_{i}}: i<\omega\right\}$.

Forcing with comb trees II

The second bullet point now ensures that

$$
\mathcal{F} \cup\left\{\bigcup_{i<\omega}\left(\text { cone above } \sigma_{i} \frown 0\right)\right\}
$$

generates a non-trivial filter, which can be extended to an ultrafilter \mathcal{U} whose elements are all somewhere dense.
The third bullet point ensures that \mathcal{U} is in fact an heir-coheir and the extra set added to \mathcal{F} ensures that $\varphi(x, y)$ does not divide along \mathcal{U}. Finally, let \mathcal{V} be any non-principal ultrafilter on $\left\{b_{\sigma_{i}}: i<\omega\right\}$. By construction, $\varphi(x, y)$ will divide along \mathcal{V}.

Forcing with comb trees II

The second bullet point now ensures that

$$
\mathcal{F} \cup\left\{\bigcup_{i<\omega}\left(\text { cone above } \sigma_{i} \frown 0\right)\right\}
$$

generates a non-trivial filter, which can be extended to an ultrafilter \mathcal{U} whose elements are all somewhere dense.
The third bullet point ensures that \mathcal{U} is in fact an heir-coheir and the extra set added to \mathcal{F} ensures that $\varphi(x, y)$ does not divide along \mathcal{U}. Finally, let \mathcal{V} be any non-principal ultrafilter on $\left\{b_{\sigma_{i}}: i<\omega\right\}$. By construction, $\varphi(x, y)$ will divide along \mathcal{V}. Furthermore, the third bullet point will ensure that \mathcal{U} and \mathcal{V} extend the same type over M, so we have the required failure of Kim's lemma for coheirs and heir-coheirs.

Forcing with comb trees III

Thank you

