James Hanson

University of Maryland

October 24, 2023
University of Maryland Logic Seminar

_ Forcing with model-theoretic trees Oct. 24, 2023 1/28

A formula ¢(x, y) has the k-tree property if there is a tree (¢,)yew<w Of
parameters such that

m paths are consistent: {((x, can) 1 N < w} for o € w?,

m siblings are k-inconsistent: {((x, c;—~p) 1 N < w}.

_ Forcing with model-theoretic trees Oct. 24, 2023 2 /28

A formula ¢(x, y) has the k-tree property if there is a tree (¢,)yew<w Of
parameters such that

m paths are consistent: {((x, can) 1 N < w} for o € w?,

m siblings are k-inconsistent: {((x, c;—~p) 1 N < w}.

Example ¢(x, a,b) = (a < x < b) with ¢ = ab in (Q, <):

(\
\)
dgs bz

_ Forcing with model-theoretic trees Oct. 24, 2023 2 /28

A formula ¢(x, y) has the k-tree property if there is a tree (¢,)yew<w Of
parameters such that

m paths are consistent: {((x, can) 1 N < w} for o € w?,

m siblings are k-inconsistent: {((x, c;—~p) 1 N < w}.

Example ¢(x, a,b) = (a < x < b) with ¢ = ab in (Q, <):

a0 bO ai b1
((\) a{z %2/3 b\3/ v
\ X 1 ASNPARLY
dy by

_ Forcing with model-theoretic trees Oct. 24, 2023 2 /28

A formula ¢(x, y) has the k-tree property if there is a tree (¢,)yew<w Of
parameters such that

m paths are consistent: {((x, can) 1 N < w} for o € w?,

Example ¢(x, a,b) = (a < x < b) with ¢ = ab in (Q, <):

{ Vh)
\ \) \ YN JU X AM7
dy 2-inconsistent by

_ Forcing with model-theoretic trees Oct. 24, 2023 2 /28

A formula ¢(x, y) has the k-tree property if there is a tree (¢,)yew<w Of
parameters such that

m paths are consistent: {((x, can) 1 N < w} for o € w?,

m siblings are k-inconsistent: {((x, c;—~p) 1 N < w}.

Example ¢(x, a,b) = (a < x < b) with ¢ = ab in (Q, <):

400 boo aio b1o a0 b
ags bg

_ Forcing with model-theoretic trees Oct. 24, 2023 2/28

<w

_ Forcing with model-theoretic trees Oct. 24, 2023 3/28

_ Forcing with model-theoretic trees Oct. 24, 2023 3/28

bz

_ Forcing with model-theoretic trees Oct. 24, 2023 3/28

-@WWW%%W

—a 4/35 by

ay bz
a0 bO al b1 a by E
ag b@

_ Forcing with model-theoretic trees Oct. 24, 2023 3/28

_
WWIWWWW YLD

| == | = _| = _| = \//

a; %///

Paths are consistent

_
2V T i a o]

I// | =~ I// \// \// \//

S
\ 00 boo
dy

Thetreeinthetreeproperty
" PPN L

|://b° |// \// \// L

()
\ \300 bo
dg

(Extremely revisionist definition) A formula ¢(x, ¢) has the k-tree property
of the first kind

_ Forcing with model-theoretic trees Oct. 24, 2023 4 /28

(Extremely revisionist definition) A formula ¢(x, ¢) has the k-tree property
of the first kind or k-SOP;

_ Forcing with model-theoretic trees Oct. 24, 2023 4 /28

(Extremely revisionist definition) A formula ¢(x, ¢) has the k-tree property
of the first kind or k-SOP if there is a tree (¢,),cw<w Of parameters such
that

_ Forcing with model-theoretic trees Oct. 24, 2023 4 /28

(Extremely revisionist definition) A formula ¢(x, ¢) has the k-tree property
of the first kind or k-SOP if there is a tree (¢,),cw<w Of parameters such
that

m paths are consistent: {¢(x, can) i n < w} for a € w?,

_ Forcing with model-theoretic trees Oct. 24, 2023 4 /28

(Extremely revisionist definition) A formula ¢(x, ¢) has the k-tree property
of the first kind or k-SOP if there is a tree (¢,),cw<w Of parameters such
that

m paths are consistent: {¢(x, can) i n < w} for a € w?,

m for any short-toothed right-comb X C w<¥, {¢(x,¢,;): 0 € X} is
k-inconsistent.

_ Forcing with model-theoretic trees Oct. 24, 2023 4 /28

(Extremely revisionist definition) A formula ¢(x, ¢) has the k-tree property
of the first kind or k-SOP if there is a tree (¢,),cw<w Of parameters such
that

m paths are consistent: {¢(x, can) i n < w} for a € w?,

m for any short-toothed right-comb X C w<¥, {¢(x,¢,;): 0 € X} is
k-inconsistent.

Short-toothed right-combs are defined inductively:

_ Forcing with model-theoretic trees Oct. 24, 2023 4 /28

(Extremely revisionist definition) A formula ¢(x, ¢) has the k-tree property
of the first kind or k-SOP if there is a tree (¢,),cw<w Of parameters such
that

m paths are consistent: {¢(x, can) i n < w} for a € w?,

m for any short-toothed right-comb X C w<¥, {¢(x,¢,;): 0 € X} is
k-inconsistent.

Short-toothed right-combs are defined inductively:
m O is a short-toothed right-comb.

_ Forcing with model-theoretic trees Oct. 24, 2023 4 /28

(Extremely revisionist definition) A formula ¢(x, ¢) has the k-tree property
of the first kind or k-SOP if there is a tree (¢,),cw<w Of parameters such
that

m paths are consistent: {¢(x, can) i n < w} for a € w?,

m for any short-toothed right-comb X C w<¥, {¢(x,¢,;): 0 € X} is
k-inconsistent.

Short-toothed right-combs are defined inductively:
m O is a short-toothed right-comb.

m X is a short-toothed right-comb, every element of X extends o — j,
and i < j, then X U {0 — i} is a short-toothed right-comb.

_ Forcing with model-theoretic trees Oct. 24, 2023 4 /28

Forcing with model-theoretic trees

\

Distance 1

Oct. 24, 2023

5/28

In our tree in (Q, <), any pair of incomparable elements are inconsistent.

400 boo aio b1g ax b
ags bg

Hence any short-toothed right-comb is 2-inconsistent.

_ Forcing with model-theoretic trees Oct. 24, 2023 6 /28

NIP

suo3eiq

Stable

dOSN

Forcing with model-theoretic trees

Examples:

Oct. 24, 2023

7/28

NIP

Simple

Not the tree property

Stable

S Uames HaRgaR (UMDY Forcing with model-theoretic trees

suo3eiq

dOSN

Examples:

Simple: Generic graph

Oct. 24, 2023

7/28

Examples:

Simple: Generic graph

o =
NSOP;: Generic binary

function
1 nsor, [iE
Not the tree property
of the first kind

Forcing with model-theoretic trees Oct. 24, 2023 7 /28

James Hanson (UMD)

Examples:

Simple: Generic graph
N o

NSOP;: Generic binary

N _I_ P function

NTP>: Generic linearly

Not the tree property ordered graph
° of the second kind -
I S

Forcing with model-theoretic trees Oct. 24, 2023 7 /28

James Hanson (UMD)

Examples:

Simple: Generic graph
o =

NSOP;: Generic binary

N _I_ P function

NTP>: Generic linearly

Not the tree property ordered graph
° of the second kind -
E S

(Not really about trees per se)

Forcing with model-theoretic trees Oct. 24, 2023 7 /28

James Hanson (UMD)

Examples:

Simple: Generic graph

o =
NSOP;: Generic binary
function
Not the something tree property NTP;: Generic linearly
ordered graph
2 (Mutual generalization g

of NSOP; and NTP2) L] N?TP: Generic linear
order + binary function

Forcing with model-theoretic trees Oct. 24, 2023 7 /28

James Hanson (UMD)

_ Forcing with model-theoretic trees Oct. 24, 2023 8 /28

Given a structure M we can use an ultrafilter &/ on M (an M-coheir) to
‘generate’ a sequence of new elements (in the monster model).

_ Forcing with model-theoretic trees Oct. 24, 2023 9 /28

Given a structure M we can use an ultrafilter &/ on M (an M-coheir) to
‘generate’ a sequence of new elements (in the monster model).

Example (Q, <) with ultrafilter concentrating at +o0:

Q U

Monster

_ Forcing with model-theoretic trees Oct. 24, 2023 9 /28

Given a structure M we can use an ultrafilter &/ on M (an M-coheir) to
‘generate’ a sequence of new elements (in the monster model).

Example (Q, <) with ultrafilter concentrating at +o0:

Q U ao

Monster

_ Forcing with model-theoretic trees Oct. 24, 2023 9 /28

Given a structure M we can use an ultrafilter &/ on M (an M-coheir) to
‘generate’ a sequence of new elements (in the monster model).

Example (Q, <) with ultrafilter concentrating at +o0:

Q U ao

Monster

_ Forcing with model-theoretic trees Oct. 24, 2023 9 /28

Given a structure M we can use an ultrafilter &/ on M (an M-coheir) to
‘generate’ a sequence of new elements (in the monster model).

Example (Q, <) with ultrafilter concentrating at +o0:

Q U ao

Monster

B a;;1 is what U ‘looks like’ to Q and ag, ..., a;.

_ Forcing with model-theoretic trees Oct. 24, 2023 9 /28

Given a structure M we can use an ultrafilter &/ on M (an M-coheir) to
‘generate’ a sequence of new elements (in the monster model).

Example (Q, <) with ultrafilter concentrating at +o0:

Q U ao

Monster

B a;;1 is what U ‘looks like’ to Q and ag, ..., a;.

m a;,1 realizesU over QU {ao,...,a;}.

_ Forcing with model-theoretic trees Oct. 24, 2023 9 /28

Given a structure M we can use an ultrafilter &/ on M (an M-coheir) to
‘generate’ a sequence of new elements (in the monster model).

Example (Q, <) with ultrafilter concentrating at +o0:

Monster @ u a‘o
B a;;1 is what U ‘looks like’ to Q and ag, ..., a;.
m a;,1 realizesU over QU {ao,...,a;}.
B ag, a1, ... is the Morley sequence generated by U.

_ Forcing with model-theoretic trees Oct. 24, 2023 9 /28

Given a coheir U over a model M, a formula ¢(x,y) k-divides along U if
whenever by, by, ... is a Morley sequence generated by I/,
{@(x, bj) : i < w} is k-inconsistent.

_ Forcing with model-theoretic trees Oct. 24, 2023 10 / 28

SOP; in terms of coheirs

Definition
Given a coheir U over a model M, a formula ¢(x,y) k-divides along U if
whenever by, b1, ... is a Morley sequence generated by 4,

{p(x, b)) : i < w} is k-inconsistent.

Theorem (Kaplan, Ramsey)
T has SOP; if and only if there is a model M, two coheirs U/ and V

(extending the same type), and a formula ¢(x, y) such that ¢(x,y) divides
along U but not along V.

James Hanson (UMD) Forcing with model-theoretic trees Oct. 24, 2023 10 / 28

Two non-trivial coheirs of the 2-type living in the cut at 7 over Q:

_ Forcing with model-theoretic trees Oct. 24, 2023 11 /28

Two non-trivial coheirs of the 2-type living in the cut at 7 over Q:

® Upinch corresponding to two elements ‘pinching’ the cut (coming in
from both sides).

_ Forcing with model-theoretic trees Oct. 24, 2023 11 /28

Two non-trivial coheirs of the 2-type living in the cut at 7 over Q:

® Upinch corresponding to two elements ‘pinching’ the cut (coming in
from both sides).

B Upelow Corresponding to two elements sliding towards the cut from
below.

_ Forcing with model-theoretic trees Oct. 24, 2023 11 /28

Two non-trivial coheirs of the 2-type living in the cut at 7 over Q:

® Upinch corresponding to two elements ‘pinching’ the cut (coming in
from both sides).

B Upelow Corresponding to two elements sliding towards the cut from
below.

The formula (a < x < b) divides along Upejow but not along Upinch.

Q<7 T<@Q

_ Forcing with model-theoretic trees Oct. 24, 2023 11 /28

Two non-trivial coheirs of the 2-type living in the cut at 7 over Q:

® Upinch corresponding to two elements ‘pinching’ the cut (coming in
from both sides).

B Upelow Corresponding to two elements sliding towards the cut from
below.

The formula (a < x < b) divides along Upejow but not along Upinch.

Q<7T ao bo 7T<Q

Py Py
I g A I

Morley sequence generated by Upinch
Consistent

_ Forcing with model-theoretic trees Oct. 24, 2023 11 /28

Two non-trivial coheirs of the 2-type living in the cut at 7 over Q:

® Upinch corresponding to two elements ‘pinching’ the cut (coming in
from both sides).

B Upelow Corresponding to two elements sliding towards the cut from
below.

The formula (a < x < b) divides along Upejow but not along Upinch.

Q< ao bo T<Q

Morley sequence generated by Upejow
2-inconsistent

_ Forcing with model-theoretic trees Oct. 24, 2023 11 /28

Ubelow has a special property. The Morley sequence it generates

Q< aog bo T<Q

Generated by Upelow

_ Forcing with model-theoretic trees Oct. 24, 2023 12 /28

Ubelow has a special property. The Morley sequence it generates

Q< aog bo T<Q

Generated by Upelow
is ‘the same’ as the Morley sequence generated by a different coheir
backwards:

Q<mr do Co T<@Q

Generated by Uspove

_ Forcing with model-theoretic trees Oct. 24, 2023 12 /28

Ubelow has a special property. The Morley sequence it generates

Q< aog bo T<Q

Generated by Upelow
is ‘the same’ as the Morley sequence generated by a different coheir
backwards:

Q<mr do Co T<@Q

Generated by Uspove

This is non-trivial. Upinch does not have this property.

_ Forcing with model-theoretic trees Oct. 24, 2023 12 /28

U is an M-heir-coheir if whenever b realizes U over M U A, there is an
M-coheir V such that A realizes V over M U b.

_ Forcing with model-theoretic trees Oct. 24, 2023 13 /28

U is an M-heir-coheir if whenever b realizes U over M U A, there is an
M-coheir V such that A realizes V over M U b.

A formula ¢(x, b) k-divides over M if there is a sequence (b;)i<, of

realizations of the type of b over M such that {p(x, b;) : i < w} is
k-inconsistent.

_ Forcing with model-theoretic trees Oct. 24, 2023

13 / 28

TP, in terms of heir-coheirs

Definition
U is an M-heir-coheir if whenever b realizes U over M U A, there is an
M-coheir V such that A realizes V over M U b.

A formula ¢(x, b) k-divides over M if there is a sequence (b;)i<, of
realizations of the type of b over M such that {¢(x, b;) : i < w} is
k-inconsistent.

Theorem (Chernikov, Kaplan)

T has TP if and only if there is a model M, a formula ¢(x, b), and an
M-heir-coheir U extending the type of b over M such that ¢(x, b) divides
over M but does not divide along /.

James Hanson (UMD) Forcing with model-theoretic trees Oct. 24, 2023 13 /28

TP, in terms of heir-coheirs

Definition
U is an M-heir-coheir if whenever b realizes U over M U A, there is an
M-coheir V such that A realizes V over M U b.

A formula ¢(x, b) k-divides over M if there is a sequence (b;)i<, of
realizations of the type of b over M such that {¢(x, b;) : i < w} is
k-inconsistent.

Theorem (Chernikov, Kaplan)

T has TP if and only if there is a model M, a formula ¢(x, b), and an
M-heir-coheir U extending the type of b over M such that ¢(x, b) divides
over M but does not divide along /.

DLO (theory of (Q, <)) is NTP».

James Hanson (UMD) Forcing with model-theoretic trees Oct. 24, 2023 13 /28

Kruckman and Ramsey suggested formulating N?TP via a mutual
generalization of the Kim's lemmas for NSOP; and NTP5.

_ Forcing with model-theoretic trees Oct. 24, 2023 14 / 28

Kruckman and Ramsey suggested formulating N?TP via a mutual
generalization of the Kim's lemmas for NSOP; and NTP5.

m NSOP;: If ¢(x, b) divides along some coheir, then it divides along
every coheir.

_ Forcing with model-theoretic trees Oct. 24, 2023 14 / 28

Kruckman and Ramsey suggested formulating N?TP via a mutual
generalization of the Kim's lemmas for NSOP; and NTP5.

m NSOP;: If ¢(x, b) divides along some coheir, then it divides along
every coheir.

m NTP;: If ¢(x, b) divides, then it divides along every heir-coheir.

_ Forcing with model-theoretic trees Oct. 24, 2023 14 / 28

Kruckman and Ramsey suggested formulating N?TP via a mutual
generalization of the Kim's lemmas for NSOP; and NTP5.

m NSOP;: If ¢(x, b) divides along some coheir, then it divides along
every coheir.

m NTP;: If ¢(x, b) divides, then it divides along every heir-coheir.

Lead them to the bizarre tree property or BTP (uses a weakening of
heir-coheirdom).

_ Forcing with model-theoretic trees Oct. 24, 2023 14 /28

Kruckman and Ramsey suggested formulating N?TP via a mutual
generalization of the Kim's lemmas for NSOP; and NTP5.

m NSOP;: If ¢(x, b) divides along some coheir, then it divides along
every coheir.

m NTP;: If ¢(x, b) divides, then it divides along every heir-coheir.

Lead them to the bizarre tree property or BTP (uses a weakening of
heir-coheirdom).

Their philosophy also suggests the following:

_ Forcing with model-theoretic trees Oct. 24, 2023 14 /28

Kruckman and Ramsey suggested formulating N?TP via a mutual
generalization of the Kim's lemmas for NSOP; and NTP5.

m NSOP;: If ¢(x, b) divides along some coheir, then it divides along
every coheir.

m NTP;: If ¢(x, b) divides, then it divides along every heir-coheir.

Lead them to the bizarre tree property or BTP (uses a weakening of
heir-coheirdom).

Their philosophy also suggests the following:

? N?TP: If ¢(x, b) divides along some coheir, then it divides along
every heir-coheir?

James Hanson (UMD) Forcing with model-theoretic trees Oct. 24, 2023 14 /28

_ Forcing with model-theoretic trees Oct. 24, 2023 15 / 28

A formula ¢(x, ¢) has the k-comb tree property or k-CTP if there is a tree
(¢o)ocw<w of parameters such that

_ Forcing with model-theoretic trees Oct. 24, 2023 16 / 28

A formula ¢(x, ¢) has the k-comb tree property or k-CTP if there is a tree
(¢o)ocw<w of parameters such that

m paths are k-inconsistent: {¢(x, cain) 1 n < w} for a € w®,

_ Forcing with model-theoretic trees Oct. 24, 2023 16 / 28

A formula ¢(x, ¢) has the k-comb tree property or k-CTP if there is a tree
(¢o)ocw<w of parameters such that

m paths are k-inconsistent: {¢(x, cain) 1 n < w} for a € w®,
m for any right-comb X C w<¥, {¢(x,¢,) : 0 € X} is consistent.

(Note the switcheroo.)

_ Forcing with model-theoretic trees Oct. 24, 2023 16 / 28

A formula ¢(x, ¢) has the k-comb tree property or k-CTP if there is a tree
(¢o)ocw<w of parameters such that

m paths are k-inconsistent: {¢(x, cain) 1 n < w} for a € w®,

m for any right-comb X C w<¥, {¢(x,¢,) : 0 € X} is consistent.
(Note the switcheroo.)
Right-combs are defined inductively:

_ Forcing with model-theoretic trees Oct. 24, 2023 16 / 28

A formula ¢(x, ¢) has the k-comb tree property or k-CTP if there is a tree
(¢o)ocw<w of parameters such that

m paths are k-inconsistent: {¢(x, cain) 1 n < w} for a € w®,

m for any right-comb X C w<¥, {¢(x,¢,) : 0 € X} is consistent.
(Note the switcheroo.)
Right-combs are defined inductively:

m O is a right-comb.

_ Forcing with model-theoretic trees Oct. 24, 2023 16 / 28

A formula ¢(x, ¢) has the k-comb tree property or k-CTP if there is a tree
(¢o)ocw<w of parameters such that

m paths are k-inconsistent: {¢(x, cain) 1 n < w} for a € w®,

m for any right-comb X C w<¥, {¢(x,¢,) : 0 € X} is consistent.
(Note the switcheroo.)
Right-combs are defined inductively:

m O is a right-comb.

m X is a right-comb, every element of X extends o —~ j, and 7 extends
o —~ i for some i < j, then X U {7} is a right-comb.

_ Forcing with model-theoretic trees Oct. 24, 2023 16 / 28

Combs

A formula ¢(x, ¢) has the k-comb tree property or k-CTP if there is a tree
(¢o)ocw<w of parameters such that

m paths are k-inconsistent: {¢(x, cain) 1 n < w} for a € w®,
m for any right-comb X C w<¥, {¢(x,¢,) : 0 € X} is consistent.

(Note the switcheroo.)
Right-combs are defined inductively:

m J is a right-comb.

m X is a right-comb, every element of X extends o — j, and 7 extends
o —~ i for some i < j, then X U {7} is a right-comb.

Mutchnik established the following in his proof that NSOP; = NSOP-.
Theorem (Mutchnik)

The above condition without the switcheroo is equivalent to SOP;.

James Hanson (UMD) Forcing with model-theoretic trees Oct. 24, 2023 16 / 28

Characterization of CTP

Theorem (H.)

A theory has k-CTP if and only if there is a model M, a formula ¢(x, b),

and an M-heir-coheir & and an M-coheir V extending the type of b over
M such that ¢(x, b) k-divides along V but does not divide along .

James Hanson (UMD) Forcing with model-theoretic trees Oct. 24, 2023 18 / 28

Characterization of CTP

Theorem (H.)
A theory has k-CTP if and only if there is a model M, a formula ¢(x, b),

and an M-heir-coheir & and an M-coheir V extending the type of b over
M such that ¢(x, b) k-divides along V but does not divide along U.

The proof is entirely uniform in k, which leaves the following question.

Question
Does k-CTP imply 2-CTP?

James Hanson (UMD) Forcing with model-theoretic trees Oct. 24, 2023 18 / 28

Characterization of CTP

Theorem (H.)
A theory has k-CTP if and only if there is a model M, a formula ¢(x, b),

and an M-heir-coheir & and an M-coheir V extending the type of b over
M such that ¢(x, b) k-divides along V but does not divide along U.

The proof is entirely uniform in k, which leaves the following question.

Question
Does k-CTP imply 2-CTP?

We also have the following alphabetically frustrating implication:
ATP = CTP = BTP

where the antichain tree property or ATP is another candidate for ?TP,
introduced by Ahn and Kim.

James Hanson (UMD) Forcing with model-theoretic trees Oct. 24, 2023 18 / 28

If U is an M-heir-coheir and B is some configuration of realizations of U
over M, then we can find a clone B’ of B with the property that every
element of B’ realizes U over M U B.

B

_ Forcing with model-theoretic trees Oct. 24, 2023 19 /28

If U is an M-heir-coheir and B is some configuration of realizations of U
over M, then we can find a clone B’ of B with the property that every
element of B’ realizes U over M U B.

: B’ B
~ James Hanson (UMD)

Forcing with model-theoretic trees Oct. 24, 2023 19 /28

What's special about heir-coheirs?

If U is an M-heir-coheir and B is some configuration of realizations of U
over M, then we can find a clone B’ of B with the property that every
element of B’ realizes U over M U B.

ove'
't ea\\les

B’ B

James Hanson (UMD) Forcing with model-theoretic trees Oct. 24, 2023 19 /28

Realize U/ ®

_ Forcing with model-theoretic trees Oct. 24, 2023 20 / 28

Realize /o ®

_ Forcing with model-theoretic trees Oct. 24, 2023 20 / 28

Realize /o @ o

_ Forcing with model-theoretic trees Oct. 24, 2023 20 / 28

Realize V

_ Forcing with model-theoretic trees Oct. 24, 2023 20 / 28

Super realize U

_ Forcing with model-theoretic trees Oct. 24, 2023 20 / 28

Super realize U

_ Forcing with model-theoretic trees Oct. 24, 2023 20 / 28

Realize V

_ Forcing with model-theoretic trees Oct. 24, 2023 20 / 28

Super-duper realize U

T Usmes HaREeR (UMDY Forcing with model-theoretic trees |)

CTP from heir-coheir U and coheir V

James Hanson (UMD) Forcing with model-theoretic trees Oct. 24, 2023 20 / 28

PPy

Realize V

_ Forcing with model-theoretic trees Oct. 24, 2023 20 / 28

PPy

_ Forcing with model-theoretic trees Oct. 24, 2023 20 / 28

All right-combs are ¢/ Morley sequences

_ Forcing with model-theoretic trees Oct. 24, 2023 20 / 28

All paths are V Morley sequences

_ Forcing with model-theoretic trees Oct. 24, 2023 20 / 28

CTP from heir-coheir U and coheir V

James Hanson (UMD)

Use compactness to make the tree w<¥

Forcing with model-theoretic trees

Oct. 24, 2023

20 / 28

_ Forcing with model-theoretic trees Oct. 24, 2023 21 /28

Finding coheirs over models is trivial, but finding heir-coheirs can be hard.

_ Forcing with model-theoretic trees Oct. 24, 2023 22 /28

Finding coheirs over models is trivial, but finding heir-coheirs can be hard.
There are no heir-coheirs over (R, <) for instance.

_ Forcing with model-theoretic trees Oct. 24, 2023 22 /28

Finding coheirs over models is trivial, but finding heir-coheirs can be hard.
There are no heir-coheirs over (R, <) for instance.

The standard approach is this:

If U is a coheir over M and N > M is a sufficiently saturated elementary
extension, then U/ is an heir-coheir over .

_ Forcing with model-theoretic trees Oct. 24, 2023 22 /28

Finding coheirs over models is trivial, but finding heir-coheirs can be hard.
There are no heir-coheirs over (R, <) for instance.

The standard approach is this:

If U is a coheir over M and N > M is a sufficiently saturated elementary
extension, then U/ is an heir-coheir over .

This is important for the development of NTP; but is seemingly
incompatible with the way coheirs are used in NSOP; (delicately building
two coheirs extending the same type).

_ Forcing with model-theoretic trees Oct. 24, 2023 22 /28

Finding coheirs over models is trivial, but finding heir-coheirs can be hard.
There are no heir-coheirs over (R, <) for instance.

The standard approach is this:

If U is a coheir over M and N > M is a sufficiently saturated elementary
extension, then U/ is an heir-coheir over .

This is important for the development of NTP; but is seemingly
incompatible with the way coheirs are used in NSOP; (delicately building
two coheirs extending the same type).

There are many heir-coheirs over (Q, <) (any non-realized cut). Is this
generalizable?

_ Forcing with model-theoretic trees Oct. 24, 2023 22 /28

Let M be a countable model of a countable theory that is a little bit
saturated (computable saturation is more than enough).

_ Forcing with model-theoretic trees Oct. 24, 2023 23 /28

Let M be a countable model of a countable theory that is a little bit
saturated (computable saturation is more than enough).

There is a comeager set X of non-realized types over M such that any
coheir extending a type in X is an heir-coheir.

_ Forcing with model-theoretic trees Oct. 24, 2023 23 /28

Miniaturizing the saturation argument

Let M be a countable model of a countable theory that is a little bit
saturated (computable saturation is more than enough).

Proposition (H.)
There is a comeager set X of non-realized types over M such that any

coheir extending a type in X is an heir-coheir.

Proof sketch.

With a finite approximation t(x) of the type we are building generically,
look to see if there is a b in the monster such that ¢(x) A ¢(x, b) has
infinitely many realizations in M.

James Hanson (UMD) Forcing with model-theoretic trees Oct. 24, 2023 23 /28

Miniaturizing the saturation argument

Let M be a countable model of a countable theory that is a little bit
saturated (computable saturation is more than enough).

Proposition (H.)

There is a comeager set X of non-realized types over M such that any
coheir extending a type in X is an heir-coheir.

Proof sketch.

With a finite approximation t(x) of the type we are building generically,
look to see if there is a b in the monster such that ¢(x) A ¢(x, b) has
infinitely many realizations in M. Our little bit of saturation says that
there's a ¢ € M such that ¢(x) A ¢(x, ¢) has infinitely many realizations
in M. Commit to this as an approximation of our type.

James Hanson (UMD) Forcing with model-theoretic trees Oct. 24, 2023 23 /28

Miniaturizing the saturation argument

Let M be a countable model of a countable theory that is a little bit
saturated (computable saturation is more than enough).

Proposition (H.)

There is a comeager set X of non-realized types over M such that any
coheir extending a type in X is an heir-coheir.

Proof sketch.

With a finite approximation t(x) of the type we are building generically,
look to see if there is a b in the monster such that ¢(x) A ¢(x, b) has
infinitely many realizations in M. Our little bit of saturation says that
there's a ¢ € M such that ¢(x) A ¢(x, ¢) has infinitely many realizations
in M. Commit to this as an approximation of our type.

Argue that if U extends the type we built and a realizes U/ over Mb, then
every formula in the type of b over Ma is already realized in M by
construction. L]

James Hanson (UMD) Forcing with model-theoretic trees Oct. 24, 2023 23 /28

That proof is a forcing argument: We have a set of conditions that we
need to satisfy and we are free to satisfy them generically.

_ Forcing with model-theoretic trees Oct. 24, 2023 24 /28

That proof is a forcing argument: We have a set of conditions that we
need to satisfy and we are free to satisfy them generically.

The comb tree property (even on 2<“ rather than w<“) gives you precisely
what you need to generically build an heir-coheir U that is ‘shadowed’ by a
coheir V such that the given formula divides along V but not along /.

_ Forcing with model-theoretic trees Oct. 24, 2023 24 /28

A set X C 2<% is dense above o if for every T extending o, there is a
w € X extending 7. X is somewhere dense if it is dense above some o.

_ Forcing with model-theoretic trees Oct. 24, 2023 25 /28

A set X C 2<% is dense above o if for every T extending o, there is a
w € X extending 7. X is somewhere dense if it is dense above some o.

If X UY is dense above o, then either X is dense above o or there is a 7
extending o such that Y is dense above 7.

_ Forcing with model-theoretic trees Oct. 24, 2023 25 /28

A set X C 2<% is dense above o if for every T extending o, there is a
w € X extending 7. X is somewhere dense if it is dense above some o.

If X UY is dense above o, then either X is dense above o or there is a 7
extending o such that Y is dense above 7.

Assume X is not dense above o, then there is a 7 extending o such that X
contains no elements extending 7.

_ Forcing with model-theoretic trees Oct. 24, 2023 25 /28

A set X C 2<% is dense above o if for every T extending o, there is a
w € X extending 7. X is somewhere dense if it is dense above some o.

If X UY is dense above o, then either X is dense above o or there is a 7
extending o such that Y is dense above 7.

Assume X is not dense above o, then there is a 7 extending o such that X
contains no elements extending 7. But then since X U Y is dense above o,
it is also dense above 7, whereby Y is dense above 7. O

_ Forcing with model-theoretic trees Oct. 24, 2023 25 /28

Suppose we have a CTP tree (by)yep<w (for the formula ¢(x,y)) in a
mildly saturated countable model M.

_ Forcing with model-theoretic trees Oct. 24, 2023 26 / 28

Suppose we have a CTP tree (by)yep<w (for the formula ¢(x,y)) in a
mildly saturated countable model M. We can generically build a path

(0)i<w of elements of 2<% and a filter F on the tree bcp<w such that
following hold:

_ Forcing with model-theoretic trees Oct. 24, 2023 26 / 28

Suppose we have a CTP tree (by)yep<w (for the formula ¢(x,y)) in a
mildly saturated countable model M. We can generically build a path

(0)i<w of elements of 2<% and a filter F on the tree bcp<w such that
following hold:

m For each /, gj41 extends o; —~ 1.

_ Forcing with model-theoretic trees Oct. 24, 2023 26 / 28

Suppose we have a CTP tree (by)yep<w (for the formula ¢(x,y)) in a
mildly saturated countable model M. We can generically build a path

(0)i<w of elements of 2<% and a filter F on the tree bcp<w such that
following hold:

m For each /, gj41 extends o; —~ 1.

m For each X € F, there is an i such that {b; € X : 7 = o;} is dense
above o; and is in F.

_ Forcing with model-theoretic trees Oct. 24, 2023 26 / 28

Suppose we have a CTP tree (by)yep<w (for the formula ¢(x,y)) in a
mildly saturated countable model M. We can generically build a path
(0)i<w of elements of 2<% and a filter F on the tree bcp<w such that
following hold:

m For each /, gj41 extends o; —~ 1.

m For each X € F, there is an i such that {b; € X : 7 = o;} is dense
above o; and is in F.

m If Y(x, c) is an M-formula (with ¢ in the monster) such that
{bs : ¥(bs, c)} has somewhere dense intersection with every element
of F, then there is a d € M such that {b, : ¢(b,,d)} € F.

_ Forcing with model-theoretic trees Oct. 24, 2023 26 / 28

The second bullet point now ensures that

FuU U(cone above o; ~ 0)

i<w

generates a non-trivial filter,

_ Forcing with model-theoretic trees Oct. 24, 2023 27 / 28

The second bullet point now ensures that

FuU U(cone above o; —~ 0)

i<w

generates a non-trivial filter, which can be extended to an ultrafilter ¢/
whose elements are all somewhere dense.

_ Forcing with model-theoretic trees Oct. 24, 2023 27 / 28

The second bullet point now ensures that

FuU U(cone above o; —~ 0)

i<w

generates a non-trivial filter, which can be extended to an ultrafilter ¢/
whose elements are all somewhere dense.
The third bullet point ensures that ¢/ is in fact an heir-coheir

_ Forcing with model-theoretic trees Oct. 24, 2023 27 / 28

The second bullet point now ensures that

FuU { U(cone above g; —~ 0)}

i<w

generates a non-trivial filter, which can be extended to an ultrafilter ¢/
whose elements are all somewhere dense.

The third bullet point ensures that ¢/ is in fact an heir-coheir and the extra
set added to F ensures that ¢(x, y) does not divide along U.

_ Forcing with model-theoretic trees Oct. 24, 2023 27 / 28

The second bullet point now ensures that

FuU { U(cone above g; —~ O)}

i<w

generates a non-trivial filter, which can be extended to an ultrafilter &/
whose elements are all somewhere dense.

The third bullet point ensures that ¢/ is in fact an heir-coheir and the extra
set added to F ensures that ¢(x, y) does not divide along U.

Finally, let V be any non-principal ultrafilter on {b,, : i < w}.

_ Forcing with model-theoretic trees Oct. 24, 2023 27 / 28

The second bullet point now ensures that

FuU { U(cone above g; —~ O)}

i<w

generates a non-trivial filter, which can be extended to an ultrafilter I/
whose elements are all somewhere dense.

The third bullet point ensures that ¢/ is in fact an heir-coheir and the extra
set added to F ensures that ¢(x, y) does not divide along U.

Finally, let V be any non-principal ultrafilter on {b,, : i < w}. By
construction, ¢(x, y) will divide along V.

_ Forcing with model-theoretic trees Oct. 24, 2023 27 / 28

Forcing with comb trees |l

The second bullet point now ensures that

FuU {U(cone above g; —~ O)}

i<w

generates a non-trivial filter, which can be extended to an ultrafilter I/
whose elements are all somewhere dense.

The third bullet point ensures that ¢/ is in fact an heir-coheir and the extra
set added to F ensures that ¢(x, y) does not divide along U.

Finally, let V be any non-principal ultrafilter on {b,, : i < w}. By
construction, ¢(x,y) will divide along V. Furthermore, the third bullet
point will ensure that &/ and V extend the same type over M, so we have
the required failure of Kim’s lemma for coheirs and heir-coheirs.

James Hanson (UMD) Forcing with model-theoretic trees Oct. 24, 2023 27 / 28

Forcing with comb trees Il

/ /
-

James Hanson (UMD) Forcing with model-theoretic trees Oct. 24, 2023 28 /28

Thank you

James Hanson (UMD) Forcing with model-theoretic trees Oct. 24, 2023 29 /28

	Coheirs
	Combs
	Forcing

	anm35:
	35.12:
	35.11:
	35.10:
	35.9:
	35.8:
	35.7:
	35.6:
	35.5:
	35.4:
	35.3:
	35.2:
	35.1:
	35.0:
	anm34:
	34.12:
	34.11:
	34.10:
	34.9:
	34.8:
	34.7:
	34.6:
	34.5:
	34.4:
	34.3:
	34.2:
	34.1:
	34.0:
	anm33:
	33.12:
	33.11:
	33.10:
	33.9:
	33.8:
	33.7:
	33.6:
	33.5:
	33.4:
	33.3:
	33.2:
	33.1:
	33.0:
	anm32:
	32.12:
	32.11:
	32.10:
	32.9:
	32.8:
	32.7:
	32.6:
	32.5:
	32.4:
	32.3:
	32.2:
	32.1:
	32.0:
	anm31:
	31.12:
	31.11:
	31.10:
	31.9:
	31.8:
	31.7:
	31.6:
	31.5:
	31.4:
	31.3:
	31.2:
	31.1:
	31.0:
	anm30:
	30.12:
	30.11:
	30.10:
	30.9:
	30.8:
	30.7:
	30.6:
	30.5:
	30.4:
	30.3:
	30.2:
	30.1:
	30.0:
	anm29:
	29.12:
	29.11:
	29.10:
	29.9:
	29.8:
	29.7:
	29.6:
	29.5:
	29.4:
	29.3:
	29.2:
	29.1:
	29.0:
	anm28:
	28.12:
	28.11:
	28.10:
	28.9:
	28.8:
	28.7:
	28.6:
	28.5:
	28.4:
	28.3:
	28.2:
	28.1:
	28.0:
	anm27:
	27.12:
	27.11:
	27.10:
	27.9:
	27.8:
	27.7:
	27.6:
	27.5:
	27.4:
	27.3:
	27.2:
	27.1:
	27.0:
	anm26:
	26.12:
	26.11:
	26.10:
	26.9:
	26.8:
	26.7:
	26.6:
	26.5:
	26.4:
	26.3:
	26.2:
	26.1:
	26.0:
	anm25:
	25.12:
	25.11:
	25.10:
	25.9:
	25.8:
	25.7:
	25.6:
	25.5:
	25.4:
	25.3:
	25.2:
	25.1:
	25.0:
	anm24:
	24.12:
	24.11:
	24.10:
	24.9:
	24.8:
	24.7:
	24.6:
	24.5:
	24.4:
	24.3:
	24.2:
	24.1:
	24.0:
	anm23:
	23.12:
	23.11:
	23.10:
	23.9:
	23.8:
	23.7:
	23.6:
	23.5:
	23.4:
	23.3:
	23.2:
	23.1:
	23.0:
	anm22:
	22.12:
	22.11:
	22.10:
	22.9:
	22.8:
	22.7:
	22.6:
	22.5:
	22.4:
	22.3:
	22.2:
	22.1:
	22.0:
	anm21:
	21.6:
	21.5:
	21.4:
	21.3:
	21.2:
	21.1:
	21.0:
	anm20:
	20.6:
	20.5:
	20.4:
	20.3:
	20.2:
	20.1:
	20.0:
	anm19:
	19.6:
	19.5:
	19.4:
	19.3:
	19.2:
	19.1:
	19.0:
	anm18:
	18.9:
	18.8:
	18.7:
	18.6:
	18.5:
	18.4:
	18.3:
	18.2:
	18.1:
	18.0:
	anm17:
	17.9:
	17.8:
	17.7:
	17.6:
	17.5:
	17.4:
	17.3:
	17.2:
	17.1:
	17.0:
	anm16:
	16.9:
	16.8:
	16.7:
	16.6:
	16.5:
	16.4:
	16.3:
	16.2:
	16.1:
	16.0:
	anm15:
	15.9:
	15.8:
	15.7:
	15.6:
	15.5:
	15.4:
	15.3:
	15.2:
	15.1:
	15.0:
	anm14:
	14.9:
	14.8:
	14.7:
	14.6:
	14.5:
	14.4:
	14.3:
	14.2:
	14.1:
	14.0:
	anm13:
	13.9:
	13.8:
	13.7:
	13.6:
	13.5:
	13.4:
	13.3:
	13.2:
	13.1:
	13.0:
	anm12:
	12.9:
	12.8:
	12.7:
	12.6:
	12.5:
	12.4:
	12.3:
	12.2:
	12.1:
	12.0:
	anm11:
	11.9:
	11.8:
	11.7:
	11.6:
	11.5:
	11.4:
	11.3:
	11.2:
	11.1:
	11.0:
	anm10:
	10.9:
	10.8:
	10.7:
	10.6:
	10.5:
	10.4:
	10.3:
	10.2:
	10.1:
	10.0:
	anm9:
	9.9:
	9.8:
	9.7:
	9.6:
	9.5:
	9.4:
	9.3:
	9.2:
	9.1:
	9.0:
	anm8:
	8.9:
	8.8:
	8.7:
	8.6:
	8.5:
	8.4:
	8.3:
	8.2:
	8.1:
	8.0:
	anm7:
	7.9:
	7.8:
	7.7:
	7.6:
	7.5:
	7.4:
	7.3:
	7.2:
	7.1:
	7.0:
	anm6:
	6.9:
	6.8:
	6.7:
	6.6:
	6.5:
	6.4:
	6.3:
	6.2:
	6.1:
	6.0:
	anm5:
	5.9:
	5.8:
	5.7:
	5.6:
	5.5:
	5.4:
	5.3:
	5.2:
	5.1:
	5.0:
	anm4:
	4.9:
	4.8:
	4.7:
	4.6:
	4.5:
	4.4:
	4.3:
	4.2:
	4.1:
	4.0:
	anm3:
	3.9:
	3.8:
	3.7:
	3.6:
	3.5:
	3.4:
	3.3:
	3.2:
	3.1:
	3.0:
	anm2:
	2.9:
	2.8:
	2.7:
	2.6:
	2.5:
	2.4:
	2.3:
	2.2:
	2.1:
	2.0:
	anm1:
	1.9:
	1.8:
	1.7:
	1.6:
	1.5:
	1.4:
	1.3:
	1.2:
	1.1:
	1.0:
	anm0:
	0.9:
	0.8:
	0.7:
	0.6:
	0.5:
	0.4:
	0.3:
	0.2:
	0.1:
	0.0:

