James Hanson

University of Maryland

October 24, 2023
University of Maryland Logic Seminar

_ Forcing with model-theoretic trees Oct. 24, 2023 1/28



A formula ¢(x, y) has the k-tree property if there is a tree (¢, )yew<w Of
parameters such that

m paths are consistent: {((x, can) 1 N < w} for o € w?,

m siblings are k-inconsistent: {((x, c;—~p) 1 N < w}.
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A formula ¢(x, y) has the k-tree property if there is a tree (¢, )yew<w Of
parameters such that

m paths are consistent: {((x, can) 1 N < w} for o € w?,

m siblings are k-inconsistent: {((x, c;—~p) 1 N < w}.

Example ¢(x, a,b) = (a < x < b) with ¢ = ab in (Q, <):
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A formula ¢(x, y) has the k-tree property if there is a tree (¢, )yew<w Of
parameters such that

m paths are consistent: {((x, can) 1 N < w} for o € w?,

m siblings are k-inconsistent: {((x, c;—~p) 1 N < w}.

Example ¢(x, a,b) = (a < x < b) with ¢ = ab in (Q, <):
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A formula ¢(x, y) has the k-tree property if there is a tree (¢, )yew<w Of
parameters such that

m paths are consistent: {((x, can) 1 N < w} for o € w?,

Example ¢(x, a,b) = (a < x < b) with ¢ = ab in (Q, <):
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A formula ¢(x, y) has the k-tree property if there is a tree (¢, )yew<w Of
parameters such that

m paths are consistent: {((x, can) 1 N < w} for o € w?,

m siblings are k-inconsistent: {((x, c;—~p) 1 N < w}.

Example ¢(x, a,b) = (a < x < b) with ¢ = ab in (Q, <):
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(Extremely revisionist definition) A formula ¢(x, ¢) has the k-tree property
of the first kind
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(Extremely revisionist definition) A formula ¢(x, ¢) has the k-tree property
of the first kind or k-SOP;
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that
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(Extremely revisionist definition) A formula ¢(x, ¢) has the k-tree property
of the first kind or k-SOP if there is a tree (¢, ),cw<w Of parameters such
that

m paths are consistent: {¢(x, can) i n < w} for a € w?,
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(Extremely revisionist definition) A formula ¢(x, ¢) has the k-tree property
of the first kind or k-SOP if there is a tree (¢, ),cw<w Of parameters such
that

m paths are consistent: {¢(x, can) i n < w} for a € w?,

m for any short-toothed right-comb X C w<¥, {¢(x,¢,;): 0 € X} is
k-inconsistent.
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(Extremely revisionist definition) A formula ¢(x, ¢) has the k-tree property
of the first kind or k-SOP if there is a tree (¢, ),cw<w Of parameters such
that

m paths are consistent: {¢(x, can) i n < w} for a € w?,

m for any short-toothed right-comb X C w<¥, {¢(x,¢,;): 0 € X} is
k-inconsistent.

Short-toothed right-combs are defined inductively:
m O is a short-toothed right-comb.

m X is a short-toothed right-comb, every element of X extends o — j,
and i < j, then X U {0 — i} is a short-toothed right-comb.
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In our tree in (Q, <), any pair of incomparable elements are inconsistent.
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Hence any short-toothed right-comb is 2-inconsistent.
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Examples:

Simple: Generic graph

o =
NSOP;: Generic binary

function
1 nsor, [iE
Not the tree property
of the first kind
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Examples:

Simple: Generic graph
N o

NSOP;: Generic binary

N _I_ P function

NTP>: Generic linearly

Not the tree property ordered graph
° of the second kind -
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Examples:

Simple: Generic graph
o =

NSOP;: Generic binary

N _I_ P function

NTP>: Generic linearly

Not the tree property ordered graph
° of the second kind -
E S

(Not really about trees per se)
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Examples:

Simple: Generic graph

o =
NSOP;: Generic binary
function
Not the something tree property NTP;: Generic linearly
ordered graph
2 (Mutual generalization g

of NSOP; and NTP2) L] N?TP: Generic linear
order + binary function
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Given a structure M we can use an ultrafilter &/ on M (an M-coheir) to
‘generate’ a sequence of new elements (in the monster model).
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Given a structure M we can use an ultrafilter &/ on M (an M-coheir) to
‘generate’ a sequence of new elements (in the monster model).

Example (Q, <) with ultrafilter concentrating at +o0:

Q U

Monster
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Given a structure M we can use an ultrafilter &/ on M (an M-coheir) to
‘generate’ a sequence of new elements (in the monster model).

Example (Q, <) with ultrafilter concentrating at +o0:

Q U ao

Monster

B a;;1 is what U ‘looks like’ to Q and ag, ..., a;.
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Given a structure M we can use an ultrafilter &/ on M (an M-coheir) to
‘generate’ a sequence of new elements (in the monster model).

Example (Q, <) with ultrafilter concentrating at +o0:

Q U ao

Monster

B a;;1 is what U ‘looks like’ to Q and ag, ..., a;.

m a;,1 realizesU over QU {ao,...,a;}.
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Given a structure M we can use an ultrafilter &/ on M (an M-coheir) to
‘generate’ a sequence of new elements (in the monster model).

Example (Q, <) with ultrafilter concentrating at +o0:

Monster @ u a‘o
B a;;1 is what U ‘looks like’ to Q and ag, ..., a;.
m a;,1 realizesU over QU {ao,...,a;}.
B ag, a1, ... is the Morley sequence generated by U.
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Given a coheir U over a model M, a formula ¢(x,y) k-divides along U if
whenever by, by, ... is a Morley sequence generated by I/,
{@(x, bj) : i < w} is k-inconsistent.
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SOP; in terms of coheirs

Definition
Given a coheir U over a model M, a formula ¢(x,y) k-divides along U if
whenever by, b1, ... is a Morley sequence generated by 4,

{p(x, b)) : i < w} is k-inconsistent.

Theorem (Kaplan, Ramsey)
T has SOP; if and only if there is a model M, two coheirs U/ and V

(extending the same type), and a formula ¢(x, y) such that ¢(x,y) divides
along U but not along V.
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Two non-trivial coheirs of the 2-type living in the cut at 7 over Q:
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Two non-trivial coheirs of the 2-type living in the cut at 7 over Q:

® Upinch corresponding to two elements ‘pinching’ the cut (coming in
from both sides).
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Two non-trivial coheirs of the 2-type living in the cut at 7 over Q:

® Upinch corresponding to two elements ‘pinching’ the cut (coming in
from both sides).

B Upelow Corresponding to two elements sliding towards the cut from
below.
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Two non-trivial coheirs of the 2-type living in the cut at 7 over Q:

® Upinch corresponding to two elements ‘pinching’ the cut (coming in
from both sides).

B Upelow Corresponding to two elements sliding towards the cut from
below.

The formula (a < x < b) divides along Upejow but not along Upinch.

Q<7 T<@Q
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Two non-trivial coheirs of the 2-type living in the cut at 7 over Q:

® Upinch corresponding to two elements ‘pinching’ the cut (coming in
from both sides).

B Upelow Corresponding to two elements sliding towards the cut from
below.

The formula (a < x < b) divides along Upejow but not along Upinch.

Q<7T ao bo 7T<Q

Py Py
I g A I

Morley sequence generated by Upinch
Consistent
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Two non-trivial coheirs of the 2-type living in the cut at 7 over Q:

® Upinch corresponding to two elements ‘pinching’ the cut (coming in
from both sides).

B Upelow Corresponding to two elements sliding towards the cut from
below.

The formula (a < x < b) divides along Upejow but not along Upinch.

Q< ao bo T<Q

Morley sequence generated by Upejow
2-inconsistent
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Ubelow has a special property. The Morley sequence it generates

Q< aog bo T<Q

Generated by Upelow
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Ubelow has a special property. The Morley sequence it generates

Q< aog bo T<Q

Generated by Upelow
is ‘the same’ as the Morley sequence generated by a different coheir
backwards:

Q<mr do Co T<@Q

Generated by Uspove
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Ubelow has a special property. The Morley sequence it generates

Q< aog bo T<Q

Generated by Upelow
is ‘the same’ as the Morley sequence generated by a different coheir
backwards:

Q<mr do Co T<@Q

Generated by Uspove

This is non-trivial. Upinch does not have this property.
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U is an M-heir-coheir if whenever b realizes U over M U A, there is an
M-coheir V such that A realizes V over M U b.
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U is an M-heir-coheir if whenever b realizes U over M U A, there is an
M-coheir V such that A realizes V over M U b.

A formula ¢(x, b) k-divides over M if there is a sequence (b;)i<, of

realizations of the type of b over M such that {p(x, b;) : i < w} is
k-inconsistent.
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TP, in terms of heir-coheirs

Definition
U is an M-heir-coheir if whenever b realizes U over M U A, there is an
M-coheir V such that A realizes V over M U b.

A formula ¢(x, b) k-divides over M if there is a sequence (b;)i<, of
realizations of the type of b over M such that {¢(x, b;) : i < w} is
k-inconsistent.

Theorem (Chernikov, Kaplan)

T has TP if and only if there is a model M, a formula ¢(x, b), and an
M-heir-coheir U extending the type of b over M such that ¢(x, b) divides
over M but does not divide along /.

James Hanson (UMD) Forcing with model-theoretic trees Oct. 24, 2023 13 /28



TP, in terms of heir-coheirs

Definition
U is an M-heir-coheir if whenever b realizes U over M U A, there is an
M-coheir V such that A realizes V over M U b.

A formula ¢(x, b) k-divides over M if there is a sequence (b;)i<, of
realizations of the type of b over M such that {¢(x, b;) : i < w} is
k-inconsistent.

Theorem (Chernikov, Kaplan)

T has TP if and only if there is a model M, a formula ¢(x, b), and an
M-heir-coheir U extending the type of b over M such that ¢(x, b) divides
over M but does not divide along /.

DLO (theory of (Q, <)) is NTP».
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Kruckman and Ramsey suggested formulating N?TP via a mutual
generalization of the Kim's lemmas for NSOP; and NTP5.
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Kruckman and Ramsey suggested formulating N?TP via a mutual
generalization of the Kim's lemmas for NSOP; and NTP5.

m NSOP;: If ¢(x, b) divides along some coheir, then it divides along
every coheir.
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Kruckman and Ramsey suggested formulating N?TP via a mutual
generalization of the Kim's lemmas for NSOP; and NTP5.

m NSOP;: If ¢(x, b) divides along some coheir, then it divides along
every coheir.

m NTP;: If ¢(x, b) divides, then it divides along every heir-coheir.

Lead them to the bizarre tree property or BTP (uses a weakening of
heir-coheirdom).
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Kruckman and Ramsey suggested formulating N?TP via a mutual
generalization of the Kim's lemmas for NSOP; and NTP5.

m NSOP;: If ¢(x, b) divides along some coheir, then it divides along
every coheir.

m NTP;: If ¢(x, b) divides, then it divides along every heir-coheir.

Lead them to the bizarre tree property or BTP (uses a weakening of
heir-coheirdom).

Their philosophy also suggests the following:

? N?TP: If ¢(x, b) divides along some coheir, then it divides along
every heir-coheir?

James Hanson (UMD) Forcing with model-theoretic trees Oct. 24, 2023 14 /28
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A formula ¢(x, ¢) has the k-comb tree property or k-CTP if there is a tree
(¢o)ocw<w of parameters such that
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A formula ¢(x, ¢) has the k-comb tree property or k-CTP if there is a tree
(¢o)ocw<w of parameters such that

m paths are k-inconsistent: {¢(x, cain) 1 n < w} for a € w®,
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A formula ¢(x, ¢) has the k-comb tree property or k-CTP if there is a tree
(¢o)ocw<w of parameters such that

m paths are k-inconsistent: {¢(x, cain) 1 n < w} for a € w®,
m for any right-comb X C w<¥, {¢(x,¢,) : 0 € X} is consistent.

(Note the switcheroo.)
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A formula ¢(x, ¢) has the k-comb tree property or k-CTP if there is a tree
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m for any right-comb X C w<¥, {¢(x,¢,) : 0 € X} is consistent.
(Note the switcheroo.)
Right-combs are defined inductively:
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A formula ¢(x, ¢) has the k-comb tree property or k-CTP if there is a tree
(¢o)ocw<w of parameters such that

m paths are k-inconsistent: {¢(x, cain) 1 n < w} for a € w®,

m for any right-comb X C w<¥, {¢(x,¢,) : 0 € X} is consistent.
(Note the switcheroo.)
Right-combs are defined inductively:

m O is a right-comb.

m X is a right-comb, every element of X extends o —~ j, and 7 extends
o —~ i for some i < j, then X U {7} is a right-comb.
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Combs

A formula ¢(x, ¢) has the k-comb tree property or k-CTP if there is a tree
(¢o)ocw<w of parameters such that

m paths are k-inconsistent: {¢(x, cain) 1 n < w} for a € w®,
m for any right-comb X C w<¥, {¢(x,¢,) : 0 € X} is consistent.

(Note the switcheroo.)
Right-combs are defined inductively:

m J is a right-comb.

m X is a right-comb, every element of X extends o — j, and 7 extends
o —~ i for some i < j, then X U {7} is a right-comb.

Mutchnik established the following in his proof that NSOP; = NSOP-.
Theorem (Mutchnik)

The above condition without the switcheroo is equivalent to SOP;.
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Characterization of CTP

Theorem (H.)

A theory has k-CTP if and only if there is a model M, a formula ¢(x, b),

and an M-heir-coheir & and an M-coheir V extending the type of b over
M such that ¢(x, b) k-divides along V but does not divide along .

James Hanson (UMD) Forcing with model-theoretic trees Oct. 24, 2023 18 / 28



Characterization of CTP

Theorem (H.)
A theory has k-CTP if and only if there is a model M, a formula ¢(x, b),

and an M-heir-coheir & and an M-coheir V extending the type of b over
M such that ¢(x, b) k-divides along V but does not divide along U.

The proof is entirely uniform in k, which leaves the following question.

Question
Does k-CTP imply 2-CTP?
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Characterization of CTP

Theorem (H.)
A theory has k-CTP if and only if there is a model M, a formula ¢(x, b),

and an M-heir-coheir & and an M-coheir V extending the type of b over
M such that ¢(x, b) k-divides along V but does not divide along U.

The proof is entirely uniform in k, which leaves the following question.

Question
Does k-CTP imply 2-CTP?

We also have the following alphabetically frustrating implication:
ATP = CTP = BTP

where the antichain tree property or ATP is another candidate for ?TP,
introduced by Ahn and Kim.
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If U is an M-heir-coheir and B is some configuration of realizations of U
over M, then we can find a clone B’ of B with the property that every
element of B’ realizes U over M U B.

B
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If U is an M-heir-coheir and B is some configuration of realizations of U
over M, then we can find a clone B’ of B with the property that every
element of B’ realizes U over M U B.

: B’ B
~ James Hanson (UMD)
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What's special about heir-coheirs?

If U is an M-heir-coheir and B is some configuration of realizations of U
over M, then we can find a clone B’ of B with the property that every
element of B’ realizes U over M U B.

ove'
't ea\\les

B’ B
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Realize U/ ®
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Realize /o ®
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Realize /o @ o
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Realize V
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Super realize U
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Super realize U
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Realize V

_ Forcing with model-theoretic trees Oct. 24, 2023 20 / 28



Super-duper realize U
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CTP from heir-coheir U and coheir V
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PPy

Realize V
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PPy
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All right-combs are ¢/ Morley sequences
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All paths are V Morley sequences
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CTP from heir-coheir U and coheir V

James Hanson (UMD)

Use compactness to make the tree w<¥

Forcing with model-theoretic trees
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Finding coheirs over models is trivial, but finding heir-coheirs can be hard.
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Finding coheirs over models is trivial, but finding heir-coheirs can be hard.
There are no heir-coheirs over (R, <) for instance.
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Finding coheirs over models is trivial, but finding heir-coheirs can be hard.
There are no heir-coheirs over (R, <) for instance.

The standard approach is this:

If U is a coheir over M and N > M is a sufficiently saturated elementary
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The standard approach is this:

If U is a coheir over M and N > M is a sufficiently saturated elementary
extension, then U/ is an heir-coheir over .

This is important for the development of NTP; but is seemingly
incompatible with the way coheirs are used in NSOP; (delicately building
two coheirs extending the same type).
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Finding coheirs over models is trivial, but finding heir-coheirs can be hard.
There are no heir-coheirs over (R, <) for instance.

The standard approach is this:

If U is a coheir over M and N > M is a sufficiently saturated elementary
extension, then U/ is an heir-coheir over .

This is important for the development of NTP; but is seemingly
incompatible with the way coheirs are used in NSOP; (delicately building
two coheirs extending the same type).

There are many heir-coheirs over (Q, <) (any non-realized cut). Is this
generalizable?
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Let M be a countable model of a countable theory that is a little bit
saturated (computable saturation is more than enough).
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Let M be a countable model of a countable theory that is a little bit
saturated (computable saturation is more than enough).

There is a comeager set X of non-realized types over M such that any
coheir extending a type in X is an heir-coheir.
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Miniaturizing the saturation argument

Let M be a countable model of a countable theory that is a little bit
saturated (computable saturation is more than enough).

Proposition (H.)
There is a comeager set X of non-realized types over M such that any

coheir extending a type in X is an heir-coheir.

Proof sketch.

With a finite approximation t(x) of the type we are building generically,
look to see if there is a b in the monster such that ¢(x) A ¢(x, b) has
infinitely many realizations in M.
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Proposition (H.)

There is a comeager set X of non-realized types over M such that any
coheir extending a type in X is an heir-coheir.

Proof sketch.

With a finite approximation t(x) of the type we are building generically,
look to see if there is a b in the monster such that ¢(x) A ¢(x, b) has
infinitely many realizations in M. Our little bit of saturation says that
there's a ¢ € M such that ¢(x) A ¢(x, ¢) has infinitely many realizations
in M. Commit to this as an approximation of our type.
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Miniaturizing the saturation argument

Let M be a countable model of a countable theory that is a little bit
saturated (computable saturation is more than enough).

Proposition (H.)

There is a comeager set X of non-realized types over M such that any
coheir extending a type in X is an heir-coheir.

Proof sketch.

With a finite approximation t(x) of the type we are building generically,
look to see if there is a b in the monster such that ¢(x) A ¢(x, b) has
infinitely many realizations in M. Our little bit of saturation says that
there's a ¢ € M such that ¢(x) A ¢(x, ¢) has infinitely many realizations
in M. Commit to this as an approximation of our type.

Argue that if U extends the type we built and a realizes U/ over Mb, then
every formula in the type of b over Ma is already realized in M by
construction. L]
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That proof is a forcing argument: We have a set of conditions that we
need to satisfy and we are free to satisfy them generically.
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That proof is a forcing argument: We have a set of conditions that we
need to satisfy and we are free to satisfy them generically.

The comb tree property (even on 2<“ rather than w<“) gives you precisely
what you need to generically build an heir-coheir U that is ‘shadowed’ by a
coheir V such that the given formula divides along V but not along /.
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A set X C 2<% is dense above o if for every T extending o, there is a
w € X extending 7. X is somewhere dense if it is dense above some o.
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If X UY is dense above o, then either X is dense above o or there is a 7
extending o such that Y is dense above 7.
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A set X C 2<% is dense above o if for every T extending o, there is a
w € X extending 7. X is somewhere dense if it is dense above some o.

If X UY is dense above o, then either X is dense above o or there is a 7
extending o such that Y is dense above 7.

Assume X is not dense above o, then there is a 7 extending o such that X
contains no elements extending 7.

_ Forcing with model-theoretic trees Oct. 24, 2023 25 /28



A set X C 2<% is dense above o if for every T extending o, there is a
w € X extending 7. X is somewhere dense if it is dense above some o.

If X UY is dense above o, then either X is dense above o or there is a 7
extending o such that Y is dense above 7.

Assume X is not dense above o, then there is a 7 extending o such that X
contains no elements extending 7. But then since X U Y is dense above o,
it is also dense above 7, whereby Y is dense above 7. O
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Suppose we have a CTP tree (by)yep<w (for the formula ¢(x,y)) in a
mildly saturated countable model M.
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Suppose we have a CTP tree (by)yep<w (for the formula ¢(x,y)) in a
mildly saturated countable model M. We can generically build a path

(0)i<w of elements of 2<% and a filter F on the tree bcp<w such that
following hold:
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Suppose we have a CTP tree (by)yep<w (for the formula ¢(x,y)) in a
mildly saturated countable model M. We can generically build a path

(0)i<w of elements of 2<% and a filter F on the tree bcp<w such that
following hold:

m For each /, gj41 extends o; —~ 1.
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Suppose we have a CTP tree (by)yep<w (for the formula ¢(x,y)) in a
mildly saturated countable model M. We can generically build a path
(0)i<w of elements of 2<% and a filter F on the tree bcp<w such that
following hold:

m For each /, gj41 extends o; —~ 1.

m For each X € F, there is an i such that {b; € X : 7 = o;} is dense
above o; and is in F.

m If Y(x, c) is an M-formula (with ¢ in the monster) such that
{bs : ¥(bs, c)} has somewhere dense intersection with every element
of F, then there is a d € M such that {b, : ¢(b,,d)} € F.
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The second bullet point now ensures that

FuU U(cone above o; ~ 0)

i<w

generates a non-trivial filter,
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The second bullet point now ensures that

FuU U(cone above o; —~ 0)

i<w

generates a non-trivial filter, which can be extended to an ultrafilter ¢/
whose elements are all somewhere dense.
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The second bullet point now ensures that

FuU U(cone above o; —~ 0)

i<w

generates a non-trivial filter, which can be extended to an ultrafilter ¢/
whose elements are all somewhere dense.
The third bullet point ensures that ¢/ is in fact an heir-coheir
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The second bullet point now ensures that

FuU { U(cone above g; —~ 0)}

i<w

generates a non-trivial filter, which can be extended to an ultrafilter ¢/
whose elements are all somewhere dense.

The third bullet point ensures that ¢/ is in fact an heir-coheir and the extra
set added to F ensures that ¢(x, y) does not divide along U.
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The second bullet point now ensures that

FuU { U(cone above g; —~ O)}

i<w

generates a non-trivial filter, which can be extended to an ultrafilter &/
whose elements are all somewhere dense.

The third bullet point ensures that ¢/ is in fact an heir-coheir and the extra
set added to F ensures that ¢(x, y) does not divide along U.

Finally, let V be any non-principal ultrafilter on {b,, : i < w}.
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The second bullet point now ensures that

FuU { U(cone above g; —~ O)}

i<w

generates a non-trivial filter, which can be extended to an ultrafilter I/
whose elements are all somewhere dense.

The third bullet point ensures that ¢/ is in fact an heir-coheir and the extra
set added to F ensures that ¢(x, y) does not divide along U.

Finally, let V be any non-principal ultrafilter on {b,, : i < w}. By
construction, ¢(x, y) will divide along V.
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Forcing with comb trees |l

The second bullet point now ensures that

FuU {U(cone above g; —~ O)}

i<w

generates a non-trivial filter, which can be extended to an ultrafilter I/
whose elements are all somewhere dense.

The third bullet point ensures that ¢/ is in fact an heir-coheir and the extra
set added to F ensures that ¢(x, y) does not divide along U.

Finally, let V be any non-principal ultrafilter on {b,, : i < w}. By
construction, ¢(x,y) will divide along V. Furthermore, the third bullet
point will ensure that &/ and V extend the same type over M, so we have
the required failure of Kim’s lemma for coheirs and heir-coheirs.
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Forcing with comb trees Il

/ /
-
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Thank you
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