Special coheirs and model-theoretic trees

James Hanson

Iowa State University

November 19, 2024 PKU Model Theory Seminar

■ Modern model theory (as of the 70s): classifying first-order theories with combinatorial tameness properties.

- Modern model theory (as of the 70s): classifying first-order theories with combinatorial tameness properties.
- Started with Shelah's work generalizing Morley's theorem to uncountable languages. Ballooned into a large body of work called stability theory. Later extended and generalized under the title of neostability theory.

- Modern model theory (as of the 70s): classifying first-order theories with combinatorial tameness properties.
- Started with Shelah's work generalizing Morley's theorem to uncountable languages. Ballooned into a large body of work called stability theory. Later extended and generalized under the title of neostability theory.
- **There are three main adjectives that occur in stability theory: stable,** NIP or dependent, and NSOP:

- Modern model theory (as of the 70s): classifying first-order theories with combinatorial tameness properties.
- Started with Shelah's work generalizing Morley's theorem to uncountable languages. Ballooned into a large body of work called stability theory. Later extended and generalized under the title of neostability theory.
- **There are three main adjectives that occur in stability theory: stable,** NIP or dependent, and NSOP:
	- **Stable:** Tend to have a purely algebraic or (tame) combinatorial character: algebraically closed fields and equivalence relations.

- Modern model theory (as of the 70s): classifying first-order theories with combinatorial tameness properties.
- Started with Shelah's work generalizing Morley's theorem to uncountable languages. Ballooned into a large body of work called stability theory. Later extended and generalized under the title of neostability theory.
- **There are three main adjectives that occur in stability theory: stable,** NIP or dependent, and NSOP:
	- Stable: Tend to have a purely algebraic or (tame) combinatorial character: algebraically closed fields and equivalence relations.
	- NIP: Tend to have a topological character: o-minimal theories such as real-closed fields, p-adic fields.

- Modern model theory (as of the 70s): classifying first-order theories with combinatorial tameness properties.
- Started with Shelah's work generalizing Morley's theorem to uncountable languages. Ballooned into a large body of work called stability theory. Later extended and generalized under the title of neostability theory.
- **There are three main adjectives that occur in stability theory: stable,** NIP or dependent, and NSOP:
	- Stable: Tend to have a purely algebraic or (tame) combinatorial character: algebraically closed fields and equivalence relations.
	- NIP: Tend to have a topological character: o-minimal theories such as real-closed fields, p-adic fields.
	- NSOP: Doesn't have much of a structure theory, but there is an important subclass of *simple* theories, which are typically thought of as $'$ stable $+$ random noise':

- Modern model theory (as of the 70s): classifying first-order theories with combinatorial tameness properties.
- Started with Shelah's work generalizing Morley's theorem to uncountable languages. Ballooned into a large body of work called stability theory. Later extended and generalized under the title of neostability theory.
- **There are three main adjectives that occur in stability theory: stable,** NIP or dependent, and NSOP:
	- Stable: Tend to have a purely algebraic or (tame) combinatorial character: algebraically closed fields and equivalence relations.
	- NIP: Tend to have a topological character: o-minimal theories such as real-closed fields, p-adic fields.
	- NSOP: Doesn't have much of a structure theory, but there is an important subclass of *simple* theories, which are typically thought of as 'stable $+$ random noise': pseudo-finite fields and the random graph.

Important relationship between these notions:

Stable = NIP ∩ Simple = NIP ∩ NSOP

IMPORTANTE: Important relationship between these notions:

 $Stable = NIP \cap Simple = NIP \cap NSOP$

■ A lot of these adjectives are defined in terms of combinatorial consistency patterns, often involving trees.

IMPORTANTE: Important relationship between these notions:

 $Stable = NIP \cap Simple = NIP \cap NSOP$

- A lot of these adjectives are defined in terms of combinatorial consistency patterns, often involving trees.
- One common endeavor in model theory is trying to find new adjectives with tractable structure theory.

 \blacksquare Important relationship between these notions:

 $Stable = NIP \cap Simple = NIP \cap NSOP$

- A lot of these adjectives are defined in terms of combinatorial consistency patterns, often involving trees.
- One common endeavor in model theory is trying to find new adjectives with tractable structure theory. Example: $NTP₂$ is the 'least common generalization' of NIP and simplicity.

Examples:

A formula $\varphi(x, y)$ has the *k-tree property* if there is a tree $(c_{\sigma})_{\sigma \in \omega < \omega}$ of parameters such that

- paths are consistent: $\{\varphi(x,c_{\alpha\restriction n}):n<\omega\}$ for $\alpha\in\omega^\omega$,
- siblings are k-inconsistent: $\{\varphi(x, c_{\sigma \cap n}) : n < \omega\}.$

A formula $\varphi(x, y)$ has the *k-tree property* if there is a tree $(c_{\sigma})_{\sigma \in \omega < \omega}$ of parameters such that

- paths are consistent: $\{\varphi(x,c_{\alpha\restriction n}):n<\omega\}$ for $\alpha\in\omega^\omega$,
- siblings are k-inconsistent: $\{\varphi(x, c_{\sigma \cap n}) : n < \omega\}.$

Example $\varphi(x, a, b) = (a < x < b)$ with $c = ab$ in $(0, <)$:

A formula $\varphi(x, y)$ has the *k-tree property* if there is a tree $(c_{\sigma})_{\sigma \in \omega < \omega}$ of parameters such that

- paths are consistent: $\{\varphi(x,c_{\alpha\restriction n}):n<\omega\}$ for $\alpha\in\omega^\omega$,
- **■** siblings are k-inconsistent: $\{\varphi(x, c_{\sigma \frown n}) : n < \omega\}.$

Example $\varphi(x, a, b) = (a < x < b)$ with $c = ab$ in $(\mathbb{Q}, <)$:

A formula $\varphi(x, y)$ has the *k-tree property* if there is a tree $(c_{\sigma})_{\sigma \in \omega < \omega}$ of parameters such that

- paths are consistent: $\{\varphi(x,c_{\alpha\restriction n}):n<\omega\}$ for $\alpha\in\omega^\omega$,
- **siblings are k-inconsistent:** $\{\varphi(x, c_{\sigma \frown n}) : n < \omega\}.$

Example $\varphi(x, a, b) = (a < x < b)$ with $c = ab$ in (\mathbb{Q}, \leq) :

A formula $\varphi(x, y)$ has the *k-tree property* if there is a tree $(c_{\sigma})_{\sigma \in \omega < \omega}$ of parameters such that

- paths are consistent: $\{\varphi(x,c_{\alpha\restriction n}):n<\omega\}$ for $\alpha\in\omega^\omega$,
- **■** siblings are k-inconsistent: $\{\varphi(x, c_{\sigma \frown n}) : n < \omega\}.$

Example $\varphi(x, a, b) = (a < x < b)$ with $c = ab$ in $(\mathbb{Q}, <)$:

$$
f\left(\frac{1}{2}(\lambda^2+\lambda^2)+\lambda^2\lambda^2+\lambda^2
$$

Siblings are 2-inconsistent

Siblings are 2-inconsistent

Paths are consistent

Paths are consistent

Paths are consistent

(Extremely revisionist definition) A formula $\varphi(x, c)$ has the *k-tree property* of the first kind

(Extremely revisionist definition) A formula $\varphi(x, c)$ has the *k-tree property* of the first kind or k -SOP₁

(Extremely revisionist definition) A formula $\varphi(x, c)$ has the *k-tree property* of the first kind or k-SOP₁ if there is a tree $(c_{\sigma})_{\sigma \in \omega} < \omega$ of parameters such that

(Extremely revisionist definition) A formula $\varphi(x, c)$ has the *k-tree property* of the first kind or k-SOP₁ if there is a tree $(c_{\sigma})_{\sigma \in \omega} < \omega$ of parameters such that

paths are consistent: $\{\varphi({\mathsf x}, {\mathsf c}_{\alpha \restriction n}) : {\mathsf n} < \omega\}$ for $\alpha \in \omega^\omega$,

(Extremely revisionist definition) A formula $\varphi(x, c)$ has the *k-tree property* of the first kind or k-SOP₁ if there is a tree $(c_{\sigma})_{\sigma \in \omega} \leq \omega$ of parameters such that

- paths are consistent: $\{\varphi({\mathsf x}, {\mathsf c}_{\alpha \restriction n}) : {\mathsf n} < \omega\}$ for $\alpha \in \omega^\omega$,
- for any short-toothed right-comb $X\subset\omega^{<\omega},\,\{\varphi({\mathsf x},\mathsf c_\sigma):\sigma\in X\}$ is k-inconsistent.

(Extremely revisionist definition) A formula $\varphi(x, c)$ has the *k*-tree property of the first kind or k-SOP₁ if there is a tree $(c_{\sigma})_{\sigma \in \omega} \leq \omega$ of parameters such that

- paths are consistent: $\{\varphi({\mathsf x}, {\mathsf c}_{\alpha \restriction n}) : {\mathsf n} < \omega\}$ for $\alpha \in \omega^\omega$,
- for any short-toothed right-comb $X\subset\omega^{<\omega},\,\{\varphi({\mathsf x},\mathsf c_\sigma):\sigma\in X\}$ is k-inconsistent.

Short-toothed right-combs are defined inductively:
(Extremely revisionist definition) A formula $\varphi(x, c)$ has the *k-tree property* of the first kind or k-SOP₁ if there is a tree $(c_{\sigma})_{\sigma \in \omega} \leq \omega$ of parameters such that

- paths are consistent: $\{\varphi({\mathsf x}, {\mathsf c}_{\alpha \restriction n}) : {\mathsf n} < \omega\}$ for $\alpha \in \omega^\omega$,
- for any short-toothed right-comb $X\subset\omega^{<\omega},\,\{\varphi({\mathsf x},\mathsf c_\sigma):\sigma\in X\}$ is k-inconsistent.

Short-toothed right-combs are defined inductively:

 \blacksquare \emptyset is a short-toothed right-comb.

(Extremely revisionist definition) A formula $\varphi(x, c)$ has the *k*-tree property of the first kind or k-SOP₁ if there is a tree $(c_{\sigma})_{\sigma \in \omega} \leq \omega$ of parameters such that

- paths are consistent: $\{\varphi({\mathsf x}, {\mathsf c}_{\alpha \restriction n}) : {\mathsf n} < \omega\}$ for $\alpha \in \omega^\omega$,
- for any short-toothed right-comb $X\subset\omega^{<\omega},\,\{\varphi({\mathsf x},\mathsf c_\sigma):\sigma\in X\}$ is k-inconsistent.

Short-toothed right-combs are defined inductively:

- \blacksquare \emptyset is a short-toothed right-comb.
- \blacksquare X is a short-toothed right-comb, every element of X extends $\sigma \frown j$, and $i < j$, then $X \cup {\sigma > i}$ is a short-toothed right-comb.

A short-toothed right-comb

James Hanson (ISU) [Special coheirs and model-theoretic trees](#page-0-0) Nov. 19, 2024 8 / 22

In our tree in $(\mathbb{Q}, <)$, any pair of incomparable elements are inconsistent.

Hence any short-toothed right-comb is 2-inconsistent.

Given a structure M we can use an ultrafilter U on M (an M-coheir) to 'generate' a sequence of new elements (in the monster model).

Given a structure M we can use an ultrafilter U on M (an M-coheir) to 'generate' a sequence of new elements (in the monster model).

Given a structure M we can use an ultrafilter U on M (an M-coheir) to 'generate' a sequence of new elements (in the monster model).

Given a structure M we can use an ultrafilter U on M (an M-coheir) to 'generate' a sequence of new elements (in the monster model).

Given a structure M we can use an ultrafilter U on M (an M-coheir) to 'generate' a sequence of new elements (in the monster model).

Example ($\mathbb{Q},$ <) with ultrafilter concentrating at $+\infty$:

 a_{i+1} is what $\mathcal U$ 'looks like' to $\mathbb Q$ and a_0, \ldots, a_i .

Given a structure M we can use an ultrafilter U on M (an M-coheir) to 'generate' a sequence of new elements (in the monster model).

Example ($\mathbb{Q},$ <) with ultrafilter concentrating at $+\infty$:

 a_{i+1} is what $\mathcal U$ 'looks like' to $\mathbb Q$ and a_0, \ldots, a_i . **a** a_{i+1} realizes U over $\mathbb{Q} \cup \{a_0, \ldots, a_i\}$.

Given a structure M we can use an ultrafilter U on M (an M-coheir) to 'generate' a sequence of new elements (in the monster model).

- a_{i+1} is what $\mathcal U$ 'looks like' to $\mathbb Q$ and a_0, \ldots, a_i .
- **a** a_{i+1} realizes U over $\mathbb{Q} \cup \{a_0, \ldots, a_i\}$.
- \Box a₀, a₁,... is the Morley sequence generated by U.

Given a coheir U over a model M, a formula $\varphi(x, y)$ k-divides along U if whenever b_0, b_1, \ldots is a Morley sequence generated by \mathcal{U} , $\{\varphi(x, b_i) : i < \omega\}$ is *k*-inconsistent.

Given a coheir U over a model M, a formula $\varphi(x, y)$ k-divides along U if whenever b_0, b_1, \ldots is a Morley sequence generated by \mathcal{U} , $\{\varphi(x, b_i) : i < \omega\}$ is k-inconsistent.

Theorem (Kaplan, Ramsey)

T has SOP₁ if and only if there is a model M, two coheirs U and V (extending the same type), and a formula $\varphi(x, y)$ such that $\varphi(x, y)$ divides along U but not along V .

Coheir witnesses of SOP_1 in (\mathbb{Q}, \lt)

Two non-trivial coheirs of the 2-type living in the cut at π over \mathbb{Q} :

Coheir witnesses of SOP_1 in (\mathbb{Q}, \lt)

Two non-trivial coheirs of the 2-type living in the cut at π over \mathbb{Q} :

 U_{pinch} corresponding to two elements 'pinching' the cut (coming in from both sides).

- U_{pinch} corresponding to two elements 'pinching' the cut (coming in from both sides).
- \blacksquare $\mathcal{U}_{\text{below}}$ corresponding to two elements sliding towards the cut from below.

- $\mathcal{U}_{\text{pinch}}$ corresponding to two elements 'pinching' the cut (coming in from both sides).
- \blacksquare $\mathcal{U}_{\text{below}}$ corresponding to two elements sliding towards the cut from below.

The formula $(a < x < b)$ divides along $\mathcal{U}_{\text{below}}$ but not along $\mathcal{U}_{\text{pinch}}$.

- $\mathcal{U}_{\text{pinch}}$ corresponding to two elements 'pinching' the cut (coming in from both sides).
- $\mathcal{U}_{\text{below}}$ corresponding to two elements sliding towards the cut from below.

The formula $(a < x < b)$ divides along $\mathcal{U}_{\text{below}}$ but not along $\mathcal{U}_{\text{pinch}}$.

- $\mathcal{U}_{\text{pinch}}$ corresponding to two elements 'pinching' the cut (coming in from both sides).
- \blacksquare $\mathcal{U}_{\text{below}}$ corresponding to two elements sliding towards the cut from below.

The formula $(a < x < b)$ divides along $\mathcal{U}_{\text{below}}$ but not along $\mathcal{U}_{\text{pinch}}$.

 U_{below} has a special property. The Morley sequence it generates

Generated by $\mathcal{U}_{\text{below}}$

 U_{below} has a special property. The Morley sequence it generates is 'the same' as the Morley sequence generated by a different coheir backwards: $\mathbb{Q} < \pi$ and α and b_0 and α and α and α and π $\lt \mathbb{Q}$ Generated by $\mathcal{U}_{\text{below}}$ a_0 b_0 $\mathbb{Q} < \pi$ and d_0 and c_0 and $\pi < \mathbb{Q}$ Generated by $\mathcal{U}_{\text{above}}$ d_0 c₀

This is non-trivial. U_{pinch} does not have this property.

James Hanson (ISU) [Special coheirs and model-theoretic trees](#page-0-0) Nov. 19, 2024 14 / 22

U is an M-heir-coheir if whenever b realizes U over $M \cup A$, there is an M-coheir V such that A realizes V over $M \cup b$.

U is an M-heir-coheir if whenever b realizes U over $M \cup A$, there is an M-coheir V such that A realizes V over $M \cup b$.

A formula $\varphi(x, b)$ k-divides over M if there is a sequence $(b_i)_{i < \omega}$ of realizations of the type of b over M such that $\{\varphi(x, b_i) : i < \omega\}$ is k-inconsistent.

U is an M-heir-coheir if whenever b realizes U over $M \cup A$, there is an M-coheir V such that A realizes V over $M \cup b$.

A formula $\varphi(x, b)$ k-divides over M if there is a sequence $(b_i)_{i < \omega}$ of realizations of the type of b over M such that $\{\varphi(x, b_i) : i < \omega\}$ is k-inconsistent.

Theorem (Chernikov, Kaplan)

T has TP₂ if and only if there is a model M, a formula $\varphi(x, b)$, and an M-heir-coheir U extending the type of b over M such that $\varphi(x, b)$ divides over M but does not divide along U .

U is an M-heir-coheir if whenever b realizes U over $M \cup A$, there is an M-coheir V such that A realizes V over $M \cup b$.

A formula $\varphi(x, b)$ k-divides over M if there is a sequence $(b_i)_{i < \omega}$ of realizations of the type of b over M such that $\{\varphi(x, b_i) : i < \omega\}$ is k-inconsistent.

Theorem (Chernikov, Kaplan)

T has TP₂ if and only if there is a model M, a formula $\varphi(x, b)$, and an M-heir-coheir U extending the type of b over M such that $\varphi(x, b)$ divides over M but does not divide along U .

DLO (theory of (\mathbb{Q}, \leq)) is NTP₂.

NSOP₁: If $\varphi(x, b)$ divides along some coheir, then it divides along every coheir.

- **NSOP**₁: If $\varphi(x, b)$ divides along some coheir, then it divides along every coheir.
- \blacksquare NTP₂: If $\varphi(x, b)$ divides, then it divides along every heir-coheir.

- **NSOP**₁: If $\varphi(x, b)$ divides along some coheir, then it divides along every coheir.
- \blacksquare NTP₂: If $\varphi(x, b)$ divides, then it divides along every heir-coheir.

Lead them to the bizarre tree property or BTP (uses a weakening of heir-coheirdom).

- **NSOP**₁: If $\varphi(x, b)$ divides along some coheir, then it divides along every coheir.
- \blacksquare NTP₂: If $\varphi(x, b)$ divides, then it divides along every heir-coheir.

Lead them to the bizarre tree property or BTP (uses a weakening of heir-coheirdom).

Their philosophy also suggests the following:

- **NSOP**₁: If $\varphi(x, b)$ divides along some coheir, then it divides along every coheir.
- \blacksquare NTP₂: If $\varphi(x, b)$ divides, then it divides along every heir-coheir.

Lead them to the bizarre tree property or BTP (uses a weakening of heir-coheirdom).

Their philosophy also suggests the following:

? N?TP: If $\varphi(x, b)$ divides along some coheir, then it divides along every heir-coheir?

[Combs](#page-69-0)

Combs

A formula $\varphi(x, c)$ has the k-comb tree property or k-CTP if there is a tree $(c_{\sigma})_{\sigma\in\omega<\omega}$ of parameters such that

Combs

A formula $\varphi(x, c)$ has the k-comb tree property or k-CTP if there is a tree $(c_{\sigma})_{\sigma\in\omega<\omega}$ of parameters such that

paths are k-inconsistent: $\{\varphi(x,c_{\alpha\upharpoonright n}):n<\omega\}$ for $\alpha\in\omega^\omega$,
A formula $\varphi(x, c)$ has the k-comb tree property or k-CTP if there is a tree $(c_{\sigma})_{\sigma\in\omega<\omega}$ of parameters such that

paths are k-inconsistent: $\{\varphi(x,c_{\alpha\upharpoonright n}):n<\omega\}$ for $\alpha\in\omega^\omega$,

for any right-comb $X\subset\omega^{<\omega}$, $\{\varphi(x,c_\sigma):\sigma\in X\}$ is consistent. (Note the switcheroo.)

A formula $\varphi(x, c)$ has the k-comb tree property or k-CTP if there is a tree $(c_{\sigma})_{\sigma\in\omega<\omega}$ of parameters such that

paths are k-inconsistent: $\{\varphi(x,c_{\alpha\upharpoonright n}):n<\omega\}$ for $\alpha\in\omega^\omega$,

for any right-comb $X\subset\omega^{<\omega}$, $\{\varphi(x,c_\sigma):\sigma\in X\}$ is consistent.

(Note the switcheroo.)

Right-combs are defined inductively:

A formula $\varphi(x, c)$ has the k-comb tree property or k-CTP if there is a tree $(c_{\sigma})_{\sigma\in\omega<\omega}$ of parameters such that

paths are k-inconsistent: $\{\varphi(x,c_{\alpha\upharpoonright n}):n<\omega\}$ for $\alpha\in\omega^\omega$,

for any right-comb $X\subset\omega^{<\omega}$, $\{\varphi(x,c_\sigma):\sigma\in X\}$ is consistent. (Note the switcheroo.)

Right-combs are defined inductively:

 \blacksquare \varnothing is a right-comb.

A formula $\varphi(x, c)$ has the k-comb tree property or k-CTP if there is a tree $(c_{\sigma})_{\sigma\in\omega<\omega}$ of parameters such that

paths are k-inconsistent: $\{\varphi(x,c_{\alpha\upharpoonright n}):n<\omega\}$ for $\alpha\in\omega^\omega$,

for any right-comb $X\subset\omega^{<\omega}$, $\{\varphi(x,c_\sigma):\sigma\in X\}$ is consistent. (Note the switcheroo.) Right-combs are defined inductively:

- \blacksquare \varnothing is a right-comb.
- \blacksquare X is a right-comb, every element of X extends $\sigma \frown i$, and τ extends $\sigma \cap i$ for some $i < j$, then $X \cup \{\tau\}$ is a right-comb.

A formula $\varphi(x, c)$ has the k-comb tree property or k-CTP if there is a tree $(c_{\sigma})_{\sigma\in\omega<\omega}$ of parameters such that

paths are k-inconsistent: $\{\varphi(x,c_{\alpha\upharpoonright n}):n<\omega\}$ for $\alpha\in\omega^\omega$,

for any right-comb $X\subset\omega^{<\omega}$, $\{\varphi(x,c_\sigma):\sigma\in X\}$ is consistent. (Note the switcheroo.) Right-combs are defined inductively:

- \blacksquare \varnothing is a right-comb.
- \blacksquare X is a right-comb, every element of X extends $\sigma \frown i$, and τ extends $\sigma \cap i$ for some $i < j$, then $X \cup \{\tau\}$ is a right-comb.

Mutchnik established the following in his proof that $NSOP_1 = NSOP_2$.

Theorem (Mutchnik)

The above condition without the switcheroo is equivalent to $SOP₁$.

James Hanson (ISU) [Special coheirs and model-theoretic trees](#page-0-0) Nov. 19, 2024 18 / 22

A right-comb

Theorem (H.)

A theory has k-CTP if and only if there is a model M, a formula $\varphi(x, b)$, and an M-heir-coheir U and an M-coheir V extending the type of b over M such that $\varphi(x, b)$ k-divides along V but does not divide along U.

Theorem (H.)

A theory has k-CTP if and only if there is a model M, a formula $\varphi(x, b)$, and an M-heir-coheir U and an M-coheir V extending the type of b over M such that $\varphi(x, b)$ k-divides along V but does not divide along U.

The proof is entirely uniform in k , which leaves the following question.

Question

Does k-CTP imply 2-CTP?

Theorem (H.)

A theory has k-CTP if and only if there is a model M, a formula $\varphi(x, b)$, and an M-heir-coheir U and an M-coheir V extending the type of b over M such that $\varphi(x, b)$ k-divides along V but does not divide along U.

The proof is entirely uniform in k , which leaves the following question.

Question

Does k-CTP imply 2-CTP?

We also have the following alphabetically frustrating implication:

$ATP \Rightarrow CTP \Rightarrow BTP$

where the *antichain tree property* or *ATP* is another candidate for ?TP, introduced by Ahn and Kim.

James Hanson (ISU) [Special coheirs and model-theoretic trees](#page-0-0) Nov. 19, 2024 20 / 22

What's special about heir-coheirs?

If U is an M-heir-coheir and B is some configuration of realizations of U over M , then we can find a clone B^\prime of B with the property that every element of B' realizes $\mathcal U$ over $M\cup B.$

What's special about heir-coheirs?

If U is an M-heir-coheir and B is some configuration of realizations of U over M , then we can find a clone B^\prime of B with the property that every element of B' realizes $\mathcal U$ over $M\cup B.$

What's special about heir-coheirs?

If U is an M-heir-coheir and B is some configuration of realizations of U over M , then we can find a clone B^\prime of B with the property that every element of B' realizes $\mathcal U$ over $M\cup B.$

Realize \mathcal{U} .

James Hanson (ISU) [Special coheirs and model-theoretic trees](#page-0-0) Nov. 19, 2024 22 / 22

Thank you

[Forcing](#page-99-0)

Finding coheirs over models is trivial, but finding heir-coheirs can be hard.

The standard approach is this:

Fact

If U is a coheir over M and $N \succ M$ is a sufficiently saturated elementary extension, then U is an heir-coheir over N.

The standard approach is this:

Fact

If U is a coheir over M and $N \succ M$ is a sufficiently saturated elementary extension, then U is an heir-coheir over N.

This is important for the development of $NTP₂$ but is seemingly incompatible with the way coheirs are used in $NSOP₁$ (delicately building two coheirs extending the same type).

The standard approach is this:

Fact

If U is a coheir over M and $N \succ M$ is a sufficiently saturated elementary extension, then U is an heir-coheir over N.

This is important for the development of $NTP₂$ but is seemingly incompatible with the way coheirs are used in $NSOP₁$ (delicately building two coheirs extending the same type).

There are many heir-coheirs over $(\mathbb{Q}, <)$ (any non-realized cut). Is this generalizable?

Miniaturizing the saturation argument

Let M be a countable model of a countable theory that is a little bit saturated (computable saturation is more than enough).

Miniaturizing the saturation argument

Let M be a countable model of a countable theory that is a little bit saturated (computable saturation is more than enough).

Proposition (H.)

There is a comeager set X of non-realized types over M such that any coheir extending a type in X is an heir-coheir.

Miniaturizing the saturation argument

Let M be a countable model of a countable theory that is a little bit saturated (computable saturation is more than enough).

Proposition (H.)

There is a comeager set X of non-realized types over M such that any coheir extending a type in X is an heir-coheir.

Proof sketch.

With a finite approximation $\psi(x)$ of the type we are building generically, look to see if there is a b in the monster such that $\psi(x) \wedge \varphi(x, b)$ has infinitely many realizations in M.
Miniaturizing the saturation argument

Let M be a countable model of a countable theory that is a little bit saturated (computable saturation is more than enough).

Proposition (H.)

There is a comeager set X of non-realized types over M such that any coheir extending a type in X is an heir-coheir.

Proof sketch.

With a finite approximation $\psi(x)$ of the type we are building generically, look to see if there is a b in the monster such that $\psi(x) \wedge \varphi(x, b)$ has infinitely many realizations in M. Our little bit of saturation says that there's a $c \in M$ such that $\psi(x) \wedge \varphi(x, c)$ has infinitely many realizations in M. Commit to this as an approximation of our type.

Miniaturizing the saturation argument

Let M be a countable model of a countable theory that is a little bit saturated (computable saturation is more than enough).

Proposition (H.)

There is a comeager set X of non-realized types over M such that any coheir extending a type in X is an heir-coheir.

Proof sketch.

With a finite approximation $\psi(x)$ of the type we are building generically, look to see if there is a b in the monster such that $\psi(x) \wedge \varphi(x, b)$ has infinitely many realizations in M. Our little bit of saturation says that there's a $c \in M$ such that $\psi(x) \wedge \varphi(x, c)$ has infinitely many realizations in M. Commit to this as an approximation of our type. Argue that if U extends the type we built and a realizes U over Mb, then every formula in the type of b over Ma is already finitely satisfiable in M by construction.

That proof is a forcing argument: We have a set of conditions that we need to satisfy and we are free to satisfy them generically.

That proof is a forcing argument: We have a set of conditions that we need to satisfy and we are free to satisfy them generically. The comb tree property (even on $2^{<\omega}$ rather than $\omega^{<\omega})$ gives you precisely what you need to generically build an heir-coheir U that is 'shadowed' by a coheir V such that the given formula divides along V but not along U .

A set $X \subseteq 2^{<\omega}$ is *dense above* σ *i*f for every τ extending σ , there is a $\mu \in X$ extending τ . X is somewhere dense if it is dense above some σ .

A set $X \subseteq 2^{<\omega}$ is *dense above* σ *i*f for every τ extending σ , there is a $\mu \in X$ extending τ . X is somewhere dense if it is dense above some σ .

Fact

If $X \cup Y$ is dense above σ , then either X is dense above σ or there is a τ extending σ such that Y is dense above τ .

A set $X \subseteq 2^{<\omega}$ is *dense above* σ *i*f for every τ extending σ , there is a $\mu \in X$ extending τ . X is somewhere dense if it is dense above some σ .

Fact

If $X \cup Y$ is dense above σ , then either X is dense above σ or there is a τ extending σ such that Y is dense above τ .

Proof.

Assume X is not dense above σ , then there is a τ extending σ such that X contains no elements extending τ .

A set $X \subseteq 2^{<\omega}$ is *dense above* σ *i*f for every τ extending σ , there is a $\mu \in X$ extending τ . X is somewhere dense if it is dense above some σ .

Fact

If $X \cup Y$ is dense above σ , then either X is dense above σ or there is a τ extending σ such that Y is dense above τ .

Proof.

Assume X is not dense above σ , then there is a τ extending σ such that X contains no elements extending τ . But then since $X \cup Y$ is dense above σ , it is also dense above τ , whereby Y is dense above τ .

Suppose we have a CTP tree $(b_{\sigma})_{\sigma \in 2^{<\omega}}$ (for the formula $\varphi(x, y)$) in a mildly saturated countable model M.

Suppose we have a CTP tree $(b_{\sigma})_{\sigma \in 2^{<\omega}}$ (for the formula $\varphi(x, y)$) in a mildly saturated countable model M. We can generically build a path $(\sigma_i)_{i<\omega}$ of elements of 2^{ω} and a filter F on the tree $b_{\epsilon 2^{\omega}}$ such that following hold:

Suppose we have a CTP tree $(b_{\sigma})_{\sigma \in 2^{<\omega}}$ (for the formula $\varphi(x, y)$) in a mildly saturated countable model M. We can generically build a path $(\sigma_i)_{i<\omega}$ of elements of $2^{<\omega}$ and a filter F on the tree $b_{\epsilon 2<\omega}$ such that following hold:

For each i, σ_{i+1} extends $\sigma_i \frown 1$.

Suppose we have a CTP tree $(b_{\sigma})_{\sigma\in 2<\omega}$ (for the formula $\varphi(x, y)$) in a mildly saturated countable model M. We can generically build a path $(\sigma_i)_{i<\omega}$ of elements of $2^{<\omega}$ and a filter F on the tree $b_{\epsilon 2<\omega}$ such that following hold:

- For each i, σ_{i+1} extends $\sigma_i \frown 1$.
- For each $X \in \mathcal{F}$, there is an *i* such that $\{b_\tau \in X : \tau \succeq \sigma_i\}$ is dense above σ_i and is in \mathcal{F} .

Suppose we have a CTP tree $(b_{\sigma})_{\sigma\in 2<\omega}$ (for the formula $\varphi(x, y)$) in a mildly saturated countable model M. We can generically build a path $(\sigma_i)_{i<\omega}$ of elements of $2^{<\omega}$ and a filter F on the tree $b_{\epsilon 2<\omega}$ such that following hold:

- For each i, σ_{i+1} extends $\sigma_i \frown 1$.
- For each $X \in \mathcal{F}$, there is an *i* such that $\{b_\tau \in X : \tau \succeq \sigma_i\}$ is dense above σ_i and is in \mathcal{F} .
- If $\psi(x, c)$ is an M-formula (with c in the monster) such that ${b_{\sigma}:\psi(b_{\sigma},c)}$ has somewhere dense intersection with every element of F, then there is a $d \in M$ such that $\{b_{\sigma} : \psi(b_{\sigma}, d)\} \in \mathcal{F}$.

Suppose we have a CTP tree $(b_{\sigma})_{\sigma\in 2<\omega}$ (for the formula $\varphi(x, y)$) in a mildly saturated countable model M. We can generically build a path $(\sigma_i)_{i<\omega}$ of elements of $2^{<\omega}$ and a filter F on the tree $b_{\epsilon 2<\omega}$ such that following hold:

- For each i, σ_{i+1} extends $\sigma_i \frown 1$.
- For each $X \in \mathcal{F}$, there is an *i* such that $\{b_\tau \in X : \tau \succeq \sigma_i\}$ is dense above σ_i and is in \mathcal{F} .
- If $\psi(x, c)$ is an M-formula (with c in the monster) such that ${b_{\sigma}:\psi(b_{\sigma},c)}$ has somewhere dense intersection with every element of F, then there is a $d \in M$ such that $\{b_{\sigma} : \psi(b_{\sigma}, d)\} \in \mathcal{F}$.

(Draw on chalkboard.)

Forcing with comb trees II

The second bullet point now ensures that

$$
\mathcal{F} \cup \left\{ \bigcup_{i<\omega} (\text{cone above } \sigma_i \frown 0) \right\}
$$

generates a non-trivial filter,

Forcing with comb trees II

The second bullet point now ensures that

$$
\mathcal{F} \cup \left\{\bigcup_{i<\omega}(\text{cone above }\sigma_i\frown 0)\right\}
$$

generates a non-trivial filter, which can be extended to an ultrafilter U whose elements are all somewhere dense.

Forcing with comb trees II

The second bullet point now ensures that

$$
\mathcal{F} \cup \left\{ \bigcup_{i<\omega} (\text{cone above } \sigma_i \frown 0) \right\}
$$

generates a non-trivial filter, which can be extended to an ultrafilter U whose elements are all somewhere dense.

The third bullet point ensures that U is in fact an heir-coheir

$$
\mathcal{F} \cup \left\{ \bigcup_{i<\omega} (\text{cone above } \sigma_i \frown 0) \right\}
$$

generates a non-trivial filter, which can be extended to an ultrafilter U whose elements are all somewhere dense.

The third bullet point ensures that U is in fact an heir-coheir and the extra set added to F ensures that $\varphi(x, y)$ does not divide along U.

$$
\mathcal{F} \cup \left\{ \bigcup_{i<\omega} (\text{cone above } \sigma_i \frown 0) \right\}
$$

generates a non-trivial filter, which can be extended to an ultrafilter U whose elements are all somewhere dense.

The third bullet point ensures that U is in fact an heir-coheir and the extra set added to F ensures that $\varphi(x, y)$ does not divide along U. Finally, let ${\mathcal V}$ be any non-principal ultrafilter on $\{b_{\sigma_i}:i<\omega\}.$

$$
\mathcal{F} \cup \left\{ \bigcup_{i<\omega} (\text{cone above } \sigma_i \frown 0) \right\}
$$

generates a non-trivial filter, which can be extended to an ultrafilter U whose elements are all somewhere dense.

The third bullet point ensures that U is in fact an heir-coheir and the extra set added to F ensures that $\varphi(x, y)$ does not divide along U. Finally, let ${\mathcal V}$ be any non-principal ultrafilter on $\{b_{\sigma_i}:i<\omega\}$. By

construction, $\varphi(x, y)$ will divide along $\mathcal V$.

$$
\mathcal{F} \cup \left\{ \bigcup_{i<\omega} (\text{cone above } \sigma_i \frown 0) \right\}
$$

generates a non-trivial filter, which can be extended to an ultrafilter U whose elements are all somewhere dense.

The third bullet point ensures that U is in fact an heir-coheir and the extra set added to F ensures that $\varphi(x, y)$ does not divide along U. Finally, let ${\mathcal V}$ be any non-principal ultrafilter on $\{b_{\sigma_i}:i<\omega\}$. By construction, $\varphi(x, y)$ will divide along V. Furthermore, the third bullet point will ensure that U and V extend the same type over M, so we have the required failure of Kim's lemma for coheirs and heir-coheirs.

Forcing with comb trees III

James Hanson (ISU) [Special coheirs and model-theoretic trees](#page-0-0) Nov. 19, 2024 31 / 22