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Combinatorial tameness in model theory I

Modern model theory (as of the 70s): classifying first-order theories
with combinatorial tameness properties.

Started with Shelah’s work generalizing Morley’s theorem to
uncountable languages. Ballooned into a large body of work called
stability theory. Later extended and generalized under the title of
neostability theory.

There are three main adjectives that occur in stability theory: stable,
NIP or dependent, and NSOP:

Stable: Tend to have a purely algebraic or (tame) combinatorial
character: algebraically closed fields and equivalence relations.
NIP: Tend to have a topological character: o-minimal theories such as
real-closed fields, p-adic fields.
NSOP: Doesn’t have much of a structure theory, but there is an
important subclass of simple theories, which are typically thought of as
‘stable + random noise’: pseudo-finite fields and the random graph.
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Combinatorial tameness in model theory II

Important relationship between these notions:

Stable = NIP ∩ Simple = NIP ∩ NSOP

A lot of these adjectives are defined in terms of combinatorial
consistency patterns, often involving trees.

One common endeavor in model theory is trying to find new
adjectives with tractable structure theory. Example: NTP2 is the
‘least common generalization’ of NIP and simplicity.
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of the first kind
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Simple: Random GraphSimple: Generic graph

NSOP1: Generic binary
function
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NTP2
Not the tree property
of the second kind

(Not really about trees per se)

Examples:

Simple: Random GraphSimple: Generic graph

NSOP1: Generic binary
function

NTP2: Generic linearly
ordered graph
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N?TP
Not the something tree property

(Mutual generalization
of NSOP1 and NTP2)

Examples:

Simple: Random GraphSimple: Generic graph

NSOP1: Generic binary
function

NTP2: Generic linearly
ordered graph

N?TP: Generic linear
order + binary function
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The tree property in model theory

A formula φ(x , y) has the k-tree property if there is a tree (cσ)σ∈ω<ω of
parameters such that

paths are consistent: {φ(x , cα↾n) : n < ω} for α ∈ ωω,

siblings are k-inconsistent: {φ(x , cσ⌢n) : n < ω}.

Example φ(x , a, b) = (a < x < b) with c = ab in (Q, <):

(
a∅

)
b∅
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The tree in the tree property

ω<ω

a∅
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Paths are consistentSiblings are 2-inconsistent
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The tree property of the first kind

(Extremely revisionist definition) A formula φ(x , c) has the k-tree property
of the first kind

or k-SOP1 if there is a tree (cσ)σ∈ω<ω of parameters such
that

paths are consistent: {φ(x , cα↾n) : n < ω} for α ∈ ωω,

for any short-toothed right-comb X ⊂ ω<ω, {φ(x , cσ) : σ ∈ X} is
k-inconsistent.

Short-toothed right-combs are defined inductively:

∅ is a short-toothed right-comb.

X is a short-toothed right-comb, every element of X extends σ ⌢ j ,
and i < j , then X ∪ {σ ⌢ i} is a short-toothed right-comb.
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(Q, <) has 2-SOP1

In our tree in (Q, <), any pair of incomparable elements are inconsistent.
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Hence any short-toothed right-comb is 2-inconsistent.
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Coheirs
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Coheirs

Given a structure M we can use an ultrafilter U on M (an M-coheir) to
‘generate’ a sequence of new elements (in the monster model).

ai+1 is what U ‘looks like’ to Q and a0, . . . , ai .

ai+1 realizes U over Q ∪ {a0, . . . , ai}.
a0, a1, . . . is the Morley sequence generated by U .
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SOP1 in terms of coheirs

Definition

Given a coheir U over a model M, a formula φ(x , y) k-divides along U if
whenever b0, b1, . . . is a Morley sequence generated by U ,
{φ(x , bi ) : i < ω} is k-inconsistent.

Theorem (Kaplan, Ramsey)

T has SOP1 if and only if there is a model M, two coheirs U and V
(extending the same type), and a formula φ(x , y) such that φ(x , y) divides
along U but not along V.
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Coheir witnesses of SOP1 in (Q, <)

Two non-trivial coheirs of the 2-type living in the cut at π over Q:

Upinch corresponding to two elements ‘pinching’ the cut (coming in
from both sides).

Ubelow corresponding to two elements sliding towards the cut from
below.

The formula (a < x < b) divides along Ubelow but not along Upinch.
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Heir-coheirs

Ubelow has a special property. The Morley sequence it generates

is ‘the same’ as the Morley sequence generated by a different coheir
backwards:

This is non-trivial. Upinch does not have this property.
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TP2 in terms of heir-coheirs

Definition

U is an M-heir-coheir if whenever b realizes U over M ∪ A, there is an
M-coheir V such that A realizes V over M ∪ b.

A formula φ(x , b) k-divides over M if there is a sequence (bi )i<ω of
realizations of the type of b over M such that {φ(x , bi ) : i < ω} is
k-inconsistent.

Theorem (Chernikov, Kaplan)

T has TP2 if and only if there is a model M, a formula φ(x , b), and an
M-heir-coheir U extending the type of b over M such that φ(x , b) divides
over M but does not divide along U .

DLO (theory of (Q, <)) is NTP2.
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N?TP via a new Kim’s lemma?

Kruckman and Ramsey suggested formulating N?TP via a mutual
generalization of the Kim’s lemmas for NSOP1 and NTP2.

NSOP1: If φ(x , b) divides along some coheir, then it divides along
every coheir.

NTP2: If φ(x , b) divides, then it divides along every heir-coheir.

Lead them to the bizarre tree property or BTP (uses a weakening of
heir-coheirdom).

Their philosophy also suggests the following:

? N?TP: If φ(x , b) divides along some coheir, then it divides along
every heir-coheir?
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Combs
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Combs

A formula φ(x , c) has the k-comb tree property or k-CTP if there is a tree
(cσ)σ∈ω<ω of parameters such that

paths are k-inconsistent: {φ(x , cα↾n) : n < ω} for α ∈ ωω,

for any right-comb X ⊂ ω<ω, {φ(x , cσ) : σ ∈ X} is consistent.

(Note the switcheroo.)
Right-combs are defined inductively:

∅ is a right-comb.

X is a right-comb, every element of X extends σ ⌢ j , and τ extends
σ ⌢ i for some i < j , then X ∪ {τ} is a right-comb.

Mutchnik established the following in his proof that NSOP1 = NSOP2.

Theorem (Mutchnik)

The above condition without the switcheroo is equivalent to SOP1.
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A right-comb
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σ1 σ2

σ3
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Characterization of CTP

Theorem (H.)

A theory has k-CTP if and only if there is a model M, a formula φ(x , b),
and an M-heir-coheir U and an M-coheir V extending the type of b over
M such that φ(x , b) k-divides along V but does not divide along U .

The proof is entirely uniform in k , which leaves the following question.

Question

Does k-CTP imply 2-CTP?

We also have the following alphabetically frustrating implication:

ATP ⇒ CTP ⇒ BTP

where the antichain tree property or ATP is another candidate for ?TP,
introduced by Ahn and Kim.
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What’s special about heir-coheirs?

If U is an M-heir-coheir and B is some configuration of realizations of U
over M, then we can find a clone B ′ of B with the property that every
element of B ′ realizes U over M ∪ B.
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CTP from heir-coheir U and coheir V
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Whence do heir-coheirs come?

Finding coheirs over models is trivial, but finding heir-coheirs can be hard.

There are no heir-coheirs over (R, <) for instance.

The standard approach is this:

Fact

If U is a coheir over M and N ≻ M is a sufficiently saturated elementary
extension, then U is an heir-coheir over N.

This is important for the development of NTP2 but is seemingly
incompatible with the way coheirs are used in NSOP1 (delicately building
two coheirs extending the same type).

There are many heir-coheirs over (Q, <) (any non-realized cut). Is this
generalizable?
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Miniaturizing the saturation argument

Let M be a countable model of a countable theory that is a little bit
saturated (computable saturation is more than enough).

Proposition (H.)

There is a comeager set X of non-realized types over M such that any
coheir extending a type in X is an heir-coheir.

Proof sketch.

With a finite approximation ψ(x) of the type we are building generically,
look to see if there is a b in the monster such that ψ(x) ∧ φ(x , b) has
infinitely many realizations in M. Our little bit of saturation says that
there’s a c ∈ M such that ψ(x) ∧ φ(x , c) has infinitely many realizations
in M. Commit to this as an approximation of our type.
Argue that if U extends the type we built and a realizes U over Mb, then
every formula in the type of b over Ma is already finitely satisfiable in M
by construction.
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The miniaturized argument as a blueprint for CTP

That proof is a forcing argument: We have a set of conditions that we
need to satisfy and we are free to satisfy them generically.

The comb tree property (even on 2<ω rather than ω<ω) gives you precisely
what you need to generically build an heir-coheir U that is ‘shadowed’ by a
coheir V such that the given formula divides along V but not along U .
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The fundamental theorem of forcing

Definition

A set X ⊆ 2<ω is dense above σ if for every τ extending σ, there is a
µ ∈ X extending τ . X is somewhere dense if it is dense above some σ.

Fact

If X ∪ Y is dense above σ, then either X is dense above σ or there is a τ
extending σ such that Y is dense above τ .

Proof.

Assume X is not dense above σ, then there is a τ extending σ such that X
contains no elements extending τ . But then since X ∪ Y is dense above σ,
it is also dense above τ , whereby Y is dense above τ .
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Forcing with comb trees

Suppose we have a CTP tree (bσ)σ∈2<ω (for the formula φ(x , y)) in a
mildly saturated countable model M.

We can generically build a path
(σi )i<ω of elements of 2<ω and a filter F on the tree b∈2<ω such that
following hold:

For each i , σi+1 extends σi ⌢ 1.

For each X ∈ F , there is an i such that {bτ ∈ X : τ ⪰ σi} is dense
above σi and is in F .

If ψ(x , c) is an M-formula (with c in the monster) such that
{bσ : ψ(bσ, c)} has somewhere dense intersection with every element
of F , then there is a d ∈ M such that {bσ : ψ(bσ, d)} ∈ F .

(Draw on chalkboard.)
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Thank you
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Forcing with comb trees II

The second bullet point now ensures that

F ∪

{⋃
i<ω

(cone above σi ⌢ 0)

}

generates a non-trivial filter,

which can be extended to an ultrafilter U
whose elements are all somewhere dense.
The third bullet point ensures that U is in fact an heir-coheir and the extra
set added to F ensures that φ(x , y) does not divide along U .
Finally, let V be any non-principal ultrafilter on {bσi : i < ω}. By
construction, φ(x , y) will divide along V. Furthermore, the third bullet
point will ensure that U and V extend the same type over M, so we have
the required failure of Kim’s lemma for coheirs and heir-coheirs.
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Forcing with comb trees III
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