Forcing with model-theoretic trees

James Hanson

Iowa State University

September 4, 2024 Iowa State University Logic Seminar

James Hanson (ISU)

Forcing with model-theoretic trees

Sep. 4, 2024 1 / 28

 Modern model theory (as of the 70s): classifying first-order theories with combinatorial tameness properties.

- Modern model theory (as of the 70s): classifying first-order theories with combinatorial tameness properties.
- Started with Shelah's work generalizing Morley's theorem to uncountable languages. Ballooned into a large body of work called stability theory. Later extended and generalized under the title of neostability theory.

- Modern model theory (as of the 70s): classifying first-order theories with combinatorial tameness properties.
- Started with Shelah's work generalizing Morley's theorem to uncountable languages. Ballooned into a large body of work called stability theory. Later extended and generalized under the title of neostability theory.
- There are three main adjectives that occur in stability theory: stable, NIP or dependent, and NSOP:

- Modern model theory (as of the 70s): classifying first-order theories with combinatorial tameness properties.
- Started with Shelah's work generalizing Morley's theorem to uncountable languages. Ballooned into a large body of work called stability theory. Later extended and generalized under the title of neostability theory.
- There are three main adjectives that occur in stability theory: stable, NIP or dependent, and NSOP:
 - Stable: Tend to have a purely algebraic or (tame) combinatorial character: algebraically closed fields and equivalence relations.

- Modern model theory (as of the 70s): classifying first-order theories with combinatorial tameness properties.
- Started with Shelah's work generalizing Morley's theorem to uncountable languages. Ballooned into a large body of work called stability theory. Later extended and generalized under the title of neostability theory.
- There are three main adjectives that occur in stability theory: stable, NIP or dependent, and NSOP:
 - Stable: Tend to have a purely algebraic or (tame) combinatorial character: algebraically closed fields and equivalence relations.
 - NIP: Tend to have a topological character: *o*-minimal theories such as real-closed fields, *p*-adic fields.

- Modern model theory (as of the 70s): classifying first-order theories with combinatorial tameness properties.
- Started with Shelah's work generalizing Morley's theorem to uncountable languages. Ballooned into a large body of work called stability theory. Later extended and generalized under the title of neostability theory.
- There are three main adjectives that occur in stability theory: stable, NIP or dependent, and NSOP:
 - Stable: Tend to have a purely algebraic or (tame) combinatorial character: algebraically closed fields and equivalence relations.
 - NIP: Tend to have a topological character: *o*-minimal theories such as real-closed fields, *p*-adic fields.
 - NSOP: Doesn't have much of a structure theory, but there is an important subclass of *simple* theories, which are typically thought of as 'stable + random noise':

- Modern model theory (as of the 70s): classifying first-order theories with combinatorial tameness properties.
- Started with Shelah's work generalizing Morley's theorem to uncountable languages. Ballooned into a large body of work called stability theory. Later extended and generalized under the title of neostability theory.
- There are three main adjectives that occur in stability theory: stable, NIP or dependent, and NSOP:
 - Stable: Tend to have a purely algebraic or (tame) combinatorial character: algebraically closed fields and equivalence relations.
 - NIP: Tend to have a topological character: *o*-minimal theories such as real-closed fields, *p*-adic fields.
 - NSOP: Doesn't have much of a structure theory, but there is an important subclass of *simple* theories, which are typically thought of as 'stable + random noise': pseudo-finite fields and the random graph.

 $\mathsf{Stable} = \mathsf{NIP} \cap \mathsf{Simple} = \mathsf{NIP} \cap \mathsf{NSOP}$

 $\mathsf{Stable} = \mathsf{NIP} \cap \mathsf{Simple} = \mathsf{NIP} \cap \mathsf{NSOP}$

 A lot of these adjectives are defined in terms of combinatorial consistency patterns, often involving trees.

 $\mathsf{Stable} = \mathsf{NIP} \cap \mathsf{Simple} = \mathsf{NIP} \cap \mathsf{NSOP}$

- A lot of these adjectives are defined in terms of combinatorial consistency patterns, often involving trees.
- One common endeavor in model theory is trying to find new adjectives with tractable structure theory.

 $\mathsf{Stable} = \mathsf{NIP} \cap \mathsf{Simple} = \mathsf{NIP} \cap \mathsf{NSOP}$

- A lot of these adjectives are defined in terms of combinatorial consistency patterns, often involving trees.
- One common endeavor in model theory is trying to find new adjectives with tractable structure theory. Example: NTP₂ is the 'least common generalization' of NIP and simplicity.

Examples:

- **•** paths are consistent: $\{\varphi(x, c_{\alpha \restriction n}) : n < \omega\}$ for $\alpha \in \omega^{\omega}$,
- siblings are *k*-inconsistent: $\{\varphi(x, c_{\sigma \frown n}) : n < \omega\}$.

The tree property in model theory

A formula $\varphi(x, y)$ has the *k*-tree property if there is a tree $(c_{\sigma})_{\sigma \in \omega^{<\omega}}$ of parameters such that

- paths are consistent: $\{\varphi(x, c_{\alpha \restriction n}) : n < \omega\}$ for $\alpha \in \omega^{\omega}$,
- siblings are *k*-inconsistent: $\{\varphi(x, c_{\sigma \frown n}) : n < \omega\}$.

- paths are consistent: $\{\varphi(x, c_{\alpha \restriction n}) : n < \omega\}$ for $\alpha \in \omega^{\omega}$,
- siblings are k-inconsistent: $\{\varphi(x, c_{\sigma \frown n}) : n < \omega\}$.

- paths are consistent: $\{\varphi(x, c_{\alpha \restriction n}) : n < \omega\}$ for $\alpha \in \omega^{\omega}$,
- siblings are k-inconsistent: $\{\varphi(x, c_{\sigma \frown n}) : n < \omega\}$.

- paths are consistent: $\{\varphi(x, c_{\alpha \restriction n}) : n < \omega\}$ for $\alpha \in \omega^{\omega}$,
- siblings are k-inconsistent: $\{\varphi(x, c_{\sigma \frown n}) : n < \omega\}$.

$-\left(\begin{array}{cccc} (& &) \\ (&$

Siblings are 2-inconsistent

Siblings are 2-inconsistent

Paths are consistent

Paths are consistent

Paths are consistent

(Extremely revisionist definition) A formula $\varphi(x, c)$ has the *k*-tree property of the first kind

(Extremely revisionist definition) A formula $\varphi(x, c)$ has the *k*-tree property of the first kind or k-SOP₁

• paths are consistent: $\{\varphi(x, c_{\alpha \restriction n}) : n < \omega\}$ for $\alpha \in \omega^{\omega}$,

- **■** paths are consistent: $\{\varphi(x, c_{\alpha \restriction n}) : n < \omega\}$ for $\alpha \in \omega^{\omega}$,
- for any short-toothed right-comb X ⊂ ω^{<ω}, {φ(x, c_σ) : σ ∈ X} is k-inconsistent.

- **■** paths are consistent: $\{\varphi(x, c_{\alpha \restriction n}) : n < \omega\}$ for $\alpha \in \omega^{\omega}$,
- for any short-toothed right-comb X ⊂ ω^{<ω}, {φ(x, c_σ) : σ ∈ X} is k-inconsistent.

Short-toothed right-combs are defined inductively:
(Extremely revisionist definition) A formula $\varphi(x, c)$ has the *k*-tree property of the first kind or *k*-SOP₁ if there is a tree $(c_{\sigma})_{\sigma \in \omega^{<\omega}}$ of parameters such that

- paths are consistent: $\{\varphi(x, c_{\alpha \restriction n}) : n < \omega\}$ for $\alpha \in \omega^{\omega}$,
- for any short-toothed right-comb X ⊂ ω^{<ω}, {φ(x, c_σ) : σ ∈ X} is k-inconsistent.

Short-toothed right-combs are defined inductively:

 $\blacksquare \emptyset$ is a short-toothed right-comb.

(Extremely revisionist definition) A formula $\varphi(x, c)$ has the *k*-tree property of the first kind or *k*-SOP₁ if there is a tree $(c_{\sigma})_{\sigma \in \omega^{<\omega}}$ of parameters such that

- **•** paths are consistent: $\{\varphi(x, c_{\alpha \restriction n}) : n < \omega\}$ for $\alpha \in \omega^{\omega}$,
- for any short-toothed right-comb X ⊂ ω^{<ω}, {φ(x, c_σ) : σ ∈ X} is k-inconsistent.

Short-toothed right-combs are defined inductively:

- $\blacksquare \emptyset$ is a short-toothed right-comb.
- X is a short-toothed right-comb, every element of X extends $\sigma \frown j$, and i < j, then $X \cup \{\sigma \frown i\}$ is a short-toothed right-comb.

A short-toothed right-comb

In our tree in $(\mathbb{Q}, <)$, any pair of incomparable elements are inconsistent.

Hence any short-toothed right-comb is 2-inconsistent.

Given a structure M we can use an ultrafilter \mathcal{U} on M (an *M*-coheir) to 'generate' a sequence of new elements (in the monster model).

Given a structure M we can use an ultrafilter \mathcal{U} on M (an M-coheir) to 'generate' a sequence of new elements (in the monster model).

Given a structure M we can use an ultrafilter \mathcal{U} on M (an M-coheir) to 'generate' a sequence of new elements (in the monster model).

Given a structure M we can use an ultrafilter \mathcal{U} on M (an M-coheir) to 'generate' a sequence of new elements (in the monster model).

Given a structure M we can use an ultrafilter \mathcal{U} on M (an M-coheir) to 'generate' a sequence of new elements (in the monster model).

Example (\mathbb{Q} , <) with ultrafilter concentrating at $+\infty$:

• a_{i+1} is what \mathcal{U} 'looks like' to \mathbb{Q} and a_0, \ldots, a_i .

Given a structure M we can use an ultrafilter \mathcal{U} on M (an M-coheir) to 'generate' a sequence of new elements (in the monster model).

Example (\mathbb{Q} , <) with ultrafilter concentrating at $+\infty$:

a_{i+1} is what U 'looks like' to Q and a₀,..., a_i.
a_{i+1} realizes U over Q ∪ {a₀,..., a_i}.

Given a structure M we can use an ultrafilter \mathcal{U} on M (an M-coheir) to 'generate' a sequence of new elements (in the monster model).

- a_{i+1} is what \mathcal{U} 'looks like' to \mathbb{Q} and a_0, \ldots, a_i .
- a_{i+1} realizes \mathcal{U} over $\mathbb{Q} \cup \{a_0, \ldots, a_i\}$.
- a_0, a_1, \ldots is the Morley sequence generated by \mathcal{U} .

Given a coheir \mathcal{U} over a model M, a formula $\varphi(x, y)$ *k*-divides along \mathcal{U} if whenever b_0, b_1, \ldots is a Morley sequence generated by \mathcal{U} , $\{\varphi(x, b_i) : i < \omega\}$ is *k*-inconsistent.

Given a coheir \mathcal{U} over a model M, a formula $\varphi(x, y)$ *k*-divides along \mathcal{U} if whenever b_0, b_1, \ldots is a Morley sequence generated by \mathcal{U} , $\{\varphi(x, b_i) : i < \omega\}$ is *k*-inconsistent.

Theorem (Kaplan, Ramsey)

T has SOP₁ if and only if there is a model M, two coheirs \mathcal{U} and \mathcal{V} (extending the same type), and a formula $\varphi(x, y)$ such that $\varphi(x, y)$ divides along \mathcal{U} but not along \mathcal{V} .

Coheir witnesses of SOP_1 in $(\mathbb{Q}, <)$

Two non-trivial coheirs of the 2-type living in the cut at π over \mathbb{Q} :

Coheir witnesses of SOP₁ in ($\mathbb{Q}, <$)

Two non-trivial coheirs of the 2-type living in the cut at π over \mathbb{Q} :

• U_{pinch} corresponding to two elements 'pinching' the cut (coming in from both sides).

- U_{pinch} corresponding to two elements 'pinching' the cut (coming in from both sides).
- $\blacksquare \ \mathcal{U}_{\text{below}}$ corresponding to two elements sliding towards the cut from below.

- U_{pinch} corresponding to two elements 'pinching' the cut (coming in from both sides).
- $\blacksquare \ \mathcal{U}_{\text{below}}$ corresponding to two elements sliding towards the cut from below.

The formula (a < x < b) divides along \mathcal{U}_{below} but not along \mathcal{U}_{pinch} .

- U_{pinch} corresponding to two elements 'pinching' the cut (coming in from both sides).
- $\blacksquare \ \mathcal{U}_{\text{below}}$ corresponding to two elements sliding towards the cut from below.

The formula (a < x < b) divides along \mathcal{U}_{below} but not along \mathcal{U}_{pinch} .

- U_{pinch} corresponding to two elements 'pinching' the cut (coming in from both sides).
- $\blacksquare \ \mathcal{U}_{\text{below}}$ corresponding to two elements sliding towards the cut from below.

The formula (a < x < b) divides along \mathcal{U}_{below} but not along \mathcal{U}_{pinch} .

 $\mathcal{U}_{\text{below}}$ has a special property. The Morley sequence it generates

 $\mathcal{U}_{\text{below}}$ has a special property. The Morley sequence it generates

is 'the same' as the Morley sequence generated by a different coheir backwards:

 $\mathcal{U}_{\text{below}}$ has a special property. The Morley sequence it generates

is 'the same' as the Morley sequence generated by a different coheir backwards:

This is non-trivial. \mathcal{U}_{pinch} does not have this property.

James Hanson (ISU)

Forcing with model-theoretic trees

 \mathcal{U} is an *M*-heir-coheir if whenever *b* realizes \mathcal{U} over $M \cup A$, there is an *M*-coheir \mathcal{V} such that *A* realizes \mathcal{V} over $M \cup b$.

 \mathcal{U} is an *M*-heir-coheir if whenever *b* realizes \mathcal{U} over $M \cup A$, there is an *M*-coheir \mathcal{V} such that *A* realizes \mathcal{V} over $M \cup b$.

A formula $\varphi(x, b)$ *k*-divides over *M* if there is a sequence $(b_i)_{i < \omega}$ of realizations of the type of *b* over *M* such that $\{\varphi(x, b_i) : i < \omega\}$ is *k*-inconsistent.

 \mathcal{U} is an *M*-heir-coheir if whenever *b* realizes \mathcal{U} over $M \cup A$, there is an *M*-coheir \mathcal{V} such that *A* realizes \mathcal{V} over $M \cup b$.

A formula $\varphi(x, b)$ *k*-divides over *M* if there is a sequence $(b_i)_{i < \omega}$ of realizations of the type of *b* over *M* such that $\{\varphi(x, b_i) : i < \omega\}$ is *k*-inconsistent.

Theorem (Chernikov, Kaplan)

T has TP₂ if and only if there is a model M, a formula $\varphi(x, b)$, and an M-heir-coheir \mathcal{U} extending the type of b over M such that $\varphi(x, b)$ divides over M but does not divide along \mathcal{U} .

 \mathcal{U} is an *M*-heir-coheir if whenever *b* realizes \mathcal{U} over $M \cup A$, there is an *M*-coheir \mathcal{V} such that *A* realizes \mathcal{V} over $M \cup b$.

A formula $\varphi(x, b)$ *k*-divides over *M* if there is a sequence $(b_i)_{i < \omega}$ of realizations of the type of *b* over *M* such that $\{\varphi(x, b_i) : i < \omega\}$ is *k*-inconsistent.

Theorem (Chernikov, Kaplan)

T has TP₂ if and only if there is a model M, a formula $\varphi(x, b)$, and an M-heir-coheir \mathcal{U} extending the type of b over M such that $\varphi(x, b)$ divides over M but does not divide along \mathcal{U} .

DLO (theory of $(\mathbb{Q}, <)$) is NTP₂.

 NSOP₁: If φ(x, b) divides along some coheir, then it divides along every coheir.

- NSOP₁: If φ(x, b) divides along some coheir, then it divides along every coheir.
- **I** NTP₂: If $\varphi(x, b)$ divides, then it divides along every heir-coheir.

- NSOP₁: If φ(x, b) divides along some coheir, then it divides along every coheir.
- **•** NTP₂: If $\varphi(x, b)$ divides, then it divides along every heir-coheir.

Lead them to the *bizarre tree property* or *BTP* (uses a weakening of heir-coheirdom).

- NSOP₁: If φ(x, b) divides along some coheir, then it divides along every coheir.
- NTP₂: If $\varphi(x, b)$ divides, then it divides along every heir-coheir.

Lead them to the *bizarre tree property* or *BTP* (uses a weakening of heir-coheirdom).

Their philosophy also suggests the following:

- NSOP₁: If φ(x, b) divides along some coheir, then it divides along every coheir.
- NTP₂: If $\varphi(x, b)$ divides, then it divides along every heir-coheir.

Lead them to the *bizarre tree property* or *BTP* (uses a weakening of heir-coheirdom).

Their philosophy also suggests the following:

? N?TP: If φ(x, b) divides along some coheir, then it divides along every heir-coheir?

Combs

Combs

A formula $\varphi(x, c)$ has the *k*-comb tree property or *k*-CTP if there is a tree $(c_{\sigma})_{\sigma \in \omega^{\leq \omega}}$ of parameters such that

Combs

A formula $\varphi(x, c)$ has the *k*-comb tree property or *k*-CTP if there is a tree $(c_{\sigma})_{\sigma \in \omega^{\leq \omega}}$ of parameters such that

■ paths are *k*-inconsistent: $\{\varphi(x, c_{\alpha \upharpoonright n}) : n < \omega\}$ for $\alpha \in \omega^{\omega}$,
A formula $\varphi(x, c)$ has the *k*-comb tree property or *k*-CTP if there is a tree $(c_{\sigma})_{\sigma \in \omega^{<\omega}}$ of parameters such that

• paths are *k*-inconsistent: $\{\varphi(x, c_{\alpha \upharpoonright n}) : n < \omega\}$ for $\alpha \in \omega^{\omega}$,

• for any right-comb $X \subset \omega^{<\omega}$, $\{\varphi(x, c_{\sigma}) : \sigma \in X\}$ is **consistent**. (Note the switcheroo.)

A formula $\varphi(x, c)$ has the *k*-comb tree property or *k*-CTP if there is a tree $(c_{\sigma})_{\sigma \in \omega^{<\omega}}$ of parameters such that

• paths are *k*-inconsistent: $\{\varphi(x, c_{\alpha \restriction n}) : n < \omega\}$ for $\alpha \in \omega^{\omega}$,

■ for any right-comb $X \subset \omega^{<\omega}$, $\{\varphi(x, c_{\sigma}) : \sigma \in X\}$ is **consistent**. (Note the switcheroo.)

Right-combs are defined inductively:

A formula $\varphi(x, c)$ has the *k*-comb tree property or *k*-CTP if there is a tree $(c_{\sigma})_{\sigma \in \omega^{<\omega}}$ of parameters such that

• paths are *k*-inconsistent: $\{\varphi(x, c_{\alpha \restriction n}) : n < \omega\}$ for $\alpha \in \omega^{\omega}$,

■ for any right-comb $X \subset \omega^{<\omega}$, $\{\varphi(x, c_{\sigma}) : \sigma \in X\}$ is **consistent**. (Note the switcheroo.)

Right-combs are defined inductively:

■ Ø is a right-comb.

A formula $\varphi(x, c)$ has the *k*-comb tree property or *k*-CTP if there is a tree $(c_{\sigma})_{\sigma \in \omega^{<\omega}}$ of parameters such that

• paths are *k*-inconsistent: $\{\varphi(x, c_{\alpha \restriction n}) : n < \omega\}$ for $\alpha \in \omega^{\omega}$,

• for any right-comb $X \subset \omega^{<\omega}$, $\{\varphi(x, c_{\sigma}) : \sigma \in X\}$ is **consistent**.

(Note the switcheroo.)

Right-combs are defined inductively:

- Ø is a right-comb.
- X is a right-comb, every element of X extends $\sigma \frown j$, and τ extends $\sigma \frown i$ for some i < j, then $X \cup \{\tau\}$ is a right-comb.

A formula $\varphi(x, c)$ has the *k*-comb tree property or *k*-CTP if there is a tree $(c_{\sigma})_{\sigma \in \omega^{<\omega}}$ of parameters such that

• paths are *k*-inconsistent: $\{\varphi(x, c_{\alpha \restriction n}) : n < \omega\}$ for $\alpha \in \omega^{\omega}$,

• for any right-comb $X \subset \omega^{<\omega}$, $\{\varphi(x, c_{\sigma}) : \sigma \in X\}$ is **consistent**. (Note the switcheroo.) *Right-combs* are defined inductively:

- Ø is a right-comb.
- X is a right-comb, every element of X extends $\sigma \frown j$, and τ extends $\sigma \frown i$ for some i < j, then $X \cup \{\tau\}$ is a right-comb.

Mutchnik established the following in his proof that $NSOP_1 = NSOP_2$.

Theorem (Mutchnik)

The above condition without the switcheroo is equivalent to SOP_1 .

A right-comb

Theorem (H.)

A theory has k-CTP if and only if there is a model M, a formula $\varphi(x, b)$, and an M-heir-coheir \mathcal{U} and an M-coheir \mathcal{V} extending the type of b over M such that $\varphi(x, b)$ k-divides along \mathcal{V} but does not divide along \mathcal{U} .

Theorem (H.)

A theory has k-CTP if and only if there is a model M, a formula $\varphi(x, b)$, and an M-heir-coheir \mathcal{U} and an M-coheir \mathcal{V} extending the type of b over M such that $\varphi(x, b)$ k-divides along \mathcal{V} but does not divide along \mathcal{U} .

The proof is entirely uniform in k, which leaves the following question.

Question

Does *k*-CTP imply 2-CTP?

Theorem (H.)

A theory has k-CTP if and only if there is a model M, a formula $\varphi(x, b)$, and an M-heir-coheir \mathcal{U} and an M-coheir \mathcal{V} extending the type of b over M such that $\varphi(x, b)$ k-divides along \mathcal{V} but does not divide along \mathcal{U} .

The proof is entirely uniform in k, which leaves the following question.

Question

Does *k*-CTP imply 2-CTP?

We also have the following alphabetically frustrating implication:

$\mathsf{ATP} \Rightarrow \mathsf{CTP} \Rightarrow \mathsf{BTP}$

where the *antichain tree property* or *ATP* is another candidate for ?TP, introduced by Ahn and Kim.

James Hanson (ISU)

Forcing with model-theoretic trees

What's special about heir-coheirs?

If \mathcal{U} is an *M*-heir-coheir and *B* is some configuration of realizations of \mathcal{U} over *M*, then we can find a clone *B'* of *B* with the property that every element of *B'* realizes \mathcal{U} over $M \cup B$.

What's special about heir-coheirs?

If \mathcal{U} is an *M*-heir-coheir and *B* is some configuration of realizations of \mathcal{U} over *M*, then we can find a clone *B'* of *B* with the property that every element of *B'* realizes \mathcal{U} over $M \cup B$.

What's special about heir-coheirs?

If \mathcal{U} is an *M*-heir-coheir and *B* is some configuration of realizations of \mathcal{U} over *M*, then we can find a clone *B'* of *B* with the property that every element of *B'* realizes \mathcal{U} over $M \cup B$.

Forcing

Finding coheirs over models is trivial, but finding heir-coheirs can be hard.

The standard approach is this:

Fact

If \mathcal{U} is a coheir over M and $N \succ M$ is a sufficiently saturated elementary extension, then \mathcal{U} is an heir-coheir over N.

The standard approach is this:

Fact

If \mathcal{U} is a coheir over M and $N \succ M$ is a sufficiently saturated elementary extension, then \mathcal{U} is an heir-coheir over N.

This is important for the development of NTP_2 but is seemingly incompatible with the way coheirs are used in $NSOP_1$ (delicately building two coheirs extending the same type).

The standard approach is this:

Fact

If \mathcal{U} is a coheir over M and $N \succ M$ is a sufficiently saturated elementary extension, then \mathcal{U} is an heir-coheir over N.

This is important for the development of NTP_2 but is seemingly incompatible with the way coheirs are used in $NSOP_1$ (delicately building two coheirs extending the same type).

There are many heir-coheirs over $(\mathbb{Q}, <)$ (any non-realized cut). Is this generalizable?

Let M be a countable model of a countable theory that is a little bit saturated (computable saturation is more than enough).

Let M be a countable model of a countable theory that is a little bit saturated (computable saturation is more than enough).

Proposition (H.)

There is a comeager set X of non-realized types over M such that any coheir extending a type in X is an heir-coheir.

Let M be a countable model of a countable theory that is a little bit saturated (computable saturation is more than enough).

Proposition (H.)

There is a comeager set X of non-realized types over M such that any coheir extending a type in X is an heir-coheir.

Proof sketch.

With a finite approximation $\psi(x)$ of the type we are building generically, look to see if there is a *b* in the monster such that $\psi(x) \wedge \varphi(x, b)$ has infinitely many realizations in *M*.

Let M be a countable model of a countable theory that is a little bit saturated (computable saturation is more than enough).

Proposition (H.)

There is a comeager set X of non-realized types over M such that any coheir extending a type in X is an heir-coheir.

Proof sketch.

With a finite approximation $\psi(x)$ of the type we are building generically, look to see if there is a *b* in the monster such that $\psi(x) \land \varphi(x, b)$ has infinitely many realizations in *M*. Our little bit of saturation says that there's a $c \in M$ such that $\psi(x) \land \varphi(x, c)$ has infinitely many realizations in *M*. Commit to this as an approximation of our type.
Miniaturizing the saturation argument

Let M be a countable model of a countable theory that is a little bit saturated (computable saturation is more than enough).

Proposition (H.)

There is a comeager set X of non-realized types over M such that any coheir extending a type in X is an heir-coheir.

Proof sketch.

With a finite approximation $\psi(x)$ of the type we are building generically, look to see if there is a *b* in the monster such that $\psi(x) \land \varphi(x, b)$ has infinitely many realizations in *M*. Our little bit of saturation says that there's a $c \in M$ such that $\psi(x) \land \varphi(x, c)$ has infinitely many realizations in *M*. Commit to this as an approximation of our type. Argue that if \mathcal{U} extends the type we built and *a* realizes \mathcal{U} over *Mb*, then every formula in the type of *b* over *Ma* is already finitely satisfiable in *M* by construction.

That proof is a forcing argument: We have a set of conditions that we need to satisfy and we are free to satisfy them generically.

That proof is a forcing argument: We have a set of conditions that we need to satisfy and we are free to satisfy them generically. The comb tree property (even on $2^{<\omega}$ rather than $\omega^{<\omega}$) gives you precisely what you need to generically build an heir-coheir \mathcal{U} that is 'shadowed' by a coheir \mathcal{V} such that the given formula divides along \mathcal{V} but not along \mathcal{U} .

A set $X \subseteq 2^{<\omega}$ is *dense above* σ if for every τ extending σ , there is a $\mu \in X$ extending τ . X is *somewhere dense* if it is dense above some σ .

A set $X \subseteq 2^{<\omega}$ is *dense above* σ if for every τ extending σ , there is a $\mu \in X$ extending τ . X is *somewhere dense* if it is dense above some σ .

Fact

If $X \cup Y$ is dense above σ , then either X is dense above σ or there is a τ extending σ such that Y is dense above τ .

A set $X \subseteq 2^{<\omega}$ is *dense above* σ if for every τ extending σ , there is a $\mu \in X$ extending τ . X is *somewhere dense* if it is dense above some σ .

Fact

If $X \cup Y$ is dense above σ , then either X is dense above σ or there is a τ extending σ such that Y is dense above τ .

Proof.

Assume X is not dense above σ , then there is a τ extending σ such that X contains no elements extending τ .

A set $X \subseteq 2^{<\omega}$ is *dense above* σ if for every τ extending σ , there is a $\mu \in X$ extending τ . X is *somewhere dense* if it is dense above some σ .

Fact

If $X \cup Y$ is dense above σ , then either X is dense above σ or there is a τ extending σ such that Y is dense above τ .

Proof.

Assume X is not dense above σ , then there is a τ extending σ such that X contains no elements extending τ . But then since $X \cup Y$ is dense above σ , it is also dense above τ , whereby Y is dense above τ .

Suppose we have a CTP tree $(b_{\sigma})_{\sigma \in 2^{\leq \omega}}$ (for the formula $\varphi(x, y)$) in a mildly saturated countable model M.

• For each *i*, σ_{i+1} extends $\sigma_i \frown 1$.

- For each *i*, σ_{i+1} extends $\sigma_i \frown 1$.
- For each $X \in \mathcal{F}$, there is an *i* such that $\{b_{\tau} \in X : \tau \succeq \sigma_i\}$ is dense above σ_i and is in \mathcal{F} .

- For each *i*, σ_{i+1} extends $\sigma_i \frown 1$.
- For each $X \in \mathcal{F}$, there is an *i* such that $\{b_{\tau} \in X : \tau \succeq \sigma_i\}$ is dense above σ_i and is in \mathcal{F} .
- If $\psi(x, c)$ is an *M*-formula (with *c* in the monster) such that $\{b_{\sigma} : \psi(b_{\sigma}, c)\}$ has somewhere dense intersection with every element of \mathcal{F} , then there is a $d \in M$ such that $\{b_{\sigma} : \psi(b_{\sigma}, d)\} \in \mathcal{F}$.

- For each *i*, σ_{i+1} extends $\sigma_i \frown 1$.
- For each $X \in \mathcal{F}$, there is an *i* such that $\{b_{\tau} \in X : \tau \succeq \sigma_i\}$ is dense above σ_i and is in \mathcal{F} .
- If $\psi(x, c)$ is an *M*-formula (with *c* in the monster) such that $\{b_{\sigma} : \psi(b_{\sigma}, c)\}$ has somewhere dense intersection with every element of \mathcal{F} , then there is a $d \in M$ such that $\{b_{\sigma} : \psi(b_{\sigma}, d)\} \in \mathcal{F}$.

(Draw on chalkboard.)

Thank you

Forcing with comb trees II

The second bullet point now ensures that

$$\mathcal{F} \cup \left\{ igcup_{i < \omega} (ext{cone above } \sigma_i \frown 0)
ight\}$$

generates a non-trivial filter,

Forcing with comb trees II

The second bullet point now ensures that

$$\mathcal{F} \cup \left\{ igcup_{i < \omega} (ext{cone above } \sigma_i \frown 0)
ight\}$$

generates a non-trivial filter, which can be extended to an ultrafilter ${\cal U}$ whose elements are all somewhere dense.

Forcing with comb trees II

The second bullet point now ensures that

$$\mathcal{F} \cup \left\{ igcup_{i < \omega} (ext{cone above } \sigma_i \frown 0)
ight\}$$

generates a non-trivial filter, which can be extended to an ultrafilter ${\cal U}$ whose elements are all somewhere dense.

The third bullet point ensures that $\ensuremath{\mathcal{U}}$ is in fact an heir-coheir

$$\mathcal{F} \cup \left\{ igcup_{i < \omega} (ext{cone above } \sigma_i \frown 0)
ight\}$$

generates a non-trivial filter, which can be extended to an ultrafilter ${\cal U}$ whose elements are all somewhere dense.

The third bullet point ensures that \mathcal{U} is in fact an heir-coheir and the extra set added to \mathcal{F} ensures that $\varphi(x, y)$ does not divide along \mathcal{U} .

$$\mathcal{F} \cup \left\{ igcup_{i < \omega} (ext{cone above } \sigma_i \frown 0)
ight\}$$

generates a non-trivial filter, which can be extended to an ultrafilter ${\cal U}$ whose elements are all somewhere dense.

The third bullet point ensures that \mathcal{U} is in fact an heir-coheir and the extra set added to \mathcal{F} ensures that $\varphi(x, y)$ does not divide along \mathcal{U} . Finally, let \mathcal{V} be any non-principal ultrafilter on $\{b_{\sigma_i} : i < \omega\}$.

$$\mathcal{F} \cup \left\{ igcup_{i < \omega} (ext{cone above } \sigma_i \frown 0)
ight\}$$

generates a non-trivial filter, which can be extended to an ultrafilter ${\cal U}$ whose elements are all somewhere dense.

The third bullet point ensures that \mathcal{U} is in fact an heir-coheir and the extra set added to \mathcal{F} ensures that $\varphi(x, y)$ does not divide along \mathcal{U} . Finally, let \mathcal{V} be any non-principal ultrafilter on $\{b_{\sigma_i} : i < \omega\}$. By

construction, $\varphi(x, y)$ will divide along \mathcal{V} .

$$\mathcal{F} \cup \left\{ igcup_{i < \omega} (ext{cone above } \sigma_i \frown 0)
ight\}$$

generates a non-trivial filter, which can be extended to an ultrafilter ${\cal U}$ whose elements are all somewhere dense.

The third bullet point ensures that \mathcal{U} is in fact an heir-coheir and the extra set added to \mathcal{F} ensures that $\varphi(x, y)$ does not divide along \mathcal{U} . Finally, let \mathcal{V} be any non-principal ultrafilter on $\{b_{\sigma_i} : i < \omega\}$. By construction, $\varphi(x, y)$ will divide along \mathcal{V} . Furthermore, the third bullet point will ensure that \mathcal{U} and \mathcal{V} extend the same type over M, so we have the required failure of Kim's lemma for coheirs and heir-coheirs.

Forcing with comb trees III

