# Bounded ultraimaginary independence 

James Hanson

University of Maryland, College Park
March 26, 2023
2023 North American Annual Meeting of the ASL
University of California, Irvine

# Something for nothing: <br> Independence in arbitrary theories 

## Common themes in neo-stability

In tame contexts: Independence notion $\Rightarrow$ Generic sequences

## Common themes in neo-stability

In tame contexts: Independence notion $\Rightarrow$ Generic sequences

- Stable and simple: Non-forking $\Rightarrow$ Morley sequences


## Common themes in neo-stability

In tame contexts: Independence notion $\Rightarrow$ Generic sequences

- Stable and simple: Non-forking $\Rightarrow$ Morley sequences
- NIP and NTP $_{2}$ : Strict invariance $\Rightarrow$ Strict Morley sequences


## Common themes in neo-stability

In tame contexts: Independence notion $\Rightarrow$ Generic sequences

- Stable and simple: Non-forking $\Rightarrow$ Morley sequences
- NIP and NTP $_{2}$ : Strict invariance $\Rightarrow$ Strict Morley sequences
- NTP ${ }_{1}\left(=\right.$ NSOP $\left._{1}\right)$ : Non-Kim-forking $\Rightarrow$ Tree Morley sequences


## Common themes in neo-stability

In tame contexts: Independence notion $\Rightarrow$ Generic sequences

- Stable and simple: Non-forking $\Rightarrow$ Morley sequences
- NIP and NTP $_{2}$ : Strict invariance $\Rightarrow$ Strict Morley sequences

■ NTP ${ }_{1}\left(=\right.$ NSOP $\left._{1}\right)$ : Non-Kim-forking $\Rightarrow$ Tree Morley sequences

- Rosy: Non-b-forking $\Rightarrow$ b-Morley sequences


## Common themes in neo-stability

In tame contexts: Independence notion $\Rightarrow$ Generic sequences

- Stable and simple: Non-forking $\Rightarrow$ Morley sequences
- NIP and NTP $_{2}$ : Strict invariance $\Rightarrow$ Strict Morley sequences

■ NTP ${ }_{1}\left(=\right.$ NSOP $\left._{1}\right)$ : Non-Kim-forking $\Rightarrow$ Tree Morley sequences

- Rosy: Non-b-forking $\Rightarrow$ b-Morley sequences

Given an independence notion $\downarrow^{*}$, two questions:

## Common themes in neo-stability

In tame contexts: Independence notion $\Rightarrow$ Generic sequences

- Stable and simple: Non-forking $\Rightarrow$ Morley sequences
- NIP and NTP $_{2}$ : Strict invariance $\Rightarrow$ Strict Morley sequences

■ NTP ${ }_{1}\left(=\right.$ NSOP $\left._{1}\right)$ : Non-Kim-forking $\Rightarrow$ Tree Morley sequences

- Rosy: Non-b-forking $\Rightarrow b$-Morley sequences

Given an independence notion $\downarrow^{*}$, two questions:
Q1 Does $\downarrow^{*}$ satisfy full existence?

## Common themes in neo-stability

In tame contexts: Independence notion $\Rightarrow$ Generic sequences

- Stable and simple: Non-forking $\Rightarrow$ Morley sequences
- NIP and NTP $_{2}$ : Strict invariance $\Rightarrow$ Strict Morley sequences

■ NTP ${ }_{1}\left(=\right.$ NSOP $\left._{1}\right)$ : Non-Kim-forking $\Rightarrow$ Tree Morley sequences

- Rosy: Non-b-forking $\Rightarrow b$-Morley sequences

Given an independence notion $\downarrow^{*}$, two questions:
Q1 Does $\downarrow^{*}$ satisfy full existence?
■ If so, we can build $\downarrow^{*}$-Morley sequences: $\left(b_{i}\right)_{i<\omega}$ s.t. $b_{i} \downarrow_{A}^{*} b_{<i}$.

## Common themes in neo-stability

In tame contexts: Independence notion $\Rightarrow$ Generic sequences

- Stable and simple: Non-forking $\Rightarrow$ Morley sequences
- NIP and NTP $_{2}$ : Strict invariance $\Rightarrow$ Strict Morley sequences

■ NTP ${ }_{1}\left(=\right.$ NSOP $\left._{1}\right)$ : Non-Kim-forking $\Rightarrow$ Tree Morley sequences

- Rosy: Non-b-forking $\Rightarrow b$-Morley sequences

Given an independence notion $\downarrow^{*}$, two questions:
Q1 Does $\downarrow^{*}$ satisfy full existence?

- If so, we can build $\downarrow^{*}$-Morley sequences: $\left(b_{i}\right)_{i<\omega}$ s.t. $b_{i} \downarrow_{A}^{*} b_{<i}$.

■ Usually want a total $\downarrow^{*}$-Morley sequence: $\left(b_{i}\right)_{i<\omega}$ s.t. if $I+J \equiv{ }_{A}^{\mathrm{EM}} b_{<\omega}$, then $J \downarrow_{A}^{*} I$.

## Common themes in neo-stability

In tame contexts: Independence notion $\Rightarrow$ Generic sequences

- Stable and simple: Non-forking $\Rightarrow$ Morley sequences
- NIP and NTP $_{2}$ : Strict invariance $\Rightarrow$ Strict Morley sequences

■ NTP ${ }_{1}\left(=\right.$ NSOP $\left._{1}\right)$ : Non-Kim-forking $\Rightarrow$ Tree Morley sequences

- Rosy: Non-b-forking $\Rightarrow b$-Morley sequences

Given an independence notion $\downarrow^{*}$, two questions:
Q1 Does $\downarrow^{*}$ satisfy full existence?

- If so, we can build $\downarrow^{*}$-Morley sequences: $\left(b_{i}\right)_{i<\omega}$ s.t. $b_{i} \downarrow_{A}^{*} b_{<i}$.
- Usually want a total $\downarrow^{*}$-Morley sequence: $\left(b_{i}\right)_{i<\omega}$ s.t. if $I+J \equiv{ }_{A}^{\mathrm{EM}} b_{<\omega}$, then $J \downarrow_{A}^{*} I$.

Q2 Can we build total $\downarrow^{*}$-Morley sequences?

## Algebraic independence

What can we do in arbitrary theories?

## Algebraic independence

What can we do in arbitrary theories?

- Weakest 'reasonable' independence relation:

$$
b \underset{A}{\downarrow^{a}} c \Leftrightarrow \operatorname{acl}(A b) \cap \operatorname{acl}(A c)=\operatorname{acl}(A)
$$

## Algebraic independence

What can we do in arbitrary theories?

- Weakest 'reasonable' independence relation:

$$
b \underset{A}{\downarrow^{a}} c \Leftrightarrow \operatorname{acl}(A b) \cap \operatorname{acl}(A c)=\operatorname{acl}(A)
$$

- Good news: $\downarrow^{\text {a }}$ satisfies full existence in arbitrary theories (folklore for discrete? Conant-H. for continuous).


## Algebraic independence

What can we do in arbitrary theories?

- Weakest 'reasonable' independence relation:

$$
b \underset{A}{\downarrow^{a}} c \Leftrightarrow \operatorname{acl}(A b) \cap \operatorname{acl}(A c)=\operatorname{acl}(A)
$$

- Good news: $\downarrow$ a satisfies full existence in arbitrary theories (folklore for discrete? Conant-H. for continuous).
■ Bad news: $\downarrow^{\text {a }}$ doesn't seem to mean much in arbitrary theories.


## Hyperimaginaries

Hyperimaginary: An equivalence class $b_{E}$ of a type-definable equivalence relation $E$.

## Hyperimaginaries

Hyperimaginary: An equivalence class $b_{E}$ of a type-definable equivalence relation $E$.

■ Example: ' $|x-y|$ is infinitesimal’ in RCF.

## Hyperimaginaries

Hyperimaginary: An equivalence class $b_{E}$ of a type-definable equivalence relation $E$.

- Example: ' $|x-y|$ is infinitesimal' in RCF.
- Bounded closure: $b_{E} \in \operatorname{bdd}(A) \Leftrightarrow$ ' $\operatorname{Aut}(\mathbb{M} / A) \cdot b_{E}$ is small'


## Hyperimaginaries

Hyperimaginary: An equivalence class $b_{E}$ of a type-definable equivalence relation $E$.

- Example: ' $|x-y|$ is infinitesimal’ in RCF.
- Bounded closure: $b_{E} \in \operatorname{bdd}(A) \Leftrightarrow$ ' $\operatorname{Aut}(\mathbb{M} / A) \cdot b_{E}$ is small'
- Reasonable definition:

$$
b \underset{A}{\downarrow^{\mathrm{b}}} c \Leftrightarrow \operatorname{bdd}(A b) \cap \operatorname{bdd}(A c)=\operatorname{bdd}(A)
$$

## Hyperimaginaries

Hyperimaginary: An equivalence class $b_{E}$ of a type-definable equivalence relation $E$.

- Example: ' $|x-y|$ is infinitesimal' in RCF.
- Bounded closure: $b_{E} \in \operatorname{bdd}(A) \Leftrightarrow$ ' $\operatorname{Aut}(\mathbb{M} / A) \cdot b_{E}$ is small'
- Reasonable definition:

$$
b \underset{A}{\perp^{b}} c \Leftrightarrow \operatorname{bdd}(A b) \cap \operatorname{bdd}(A c)=\operatorname{bdd}(A)
$$

- Good news: Full existence in arbitrary theories (Conant-H.).


## Hyperimaginaries

Hyperimaginary: An equivalence class $b_{E}$ of a type-definable equivalence relation $E$.

- Example: ' $|x-y|$ is infinitesimal' in RCF.
- Bounded closure: $b_{E} \in \operatorname{bdd}(A) \Leftrightarrow$ ' $\operatorname{Aut}(\mathbb{M} / A) \cdot b_{E}$ is small'
- Reasonable definition:

$$
b \underset{A}{\downarrow^{\mathrm{b}}} c \Leftrightarrow \operatorname{bdd}(A b) \cap \operatorname{bdd}(A c)=\operatorname{bdd}(A)
$$

- Good news: Full existence in arbitrary theories (Conant-H.).
- Bad news: Somewhat infinitary.


## Hyperimaginaries

Hyperimaginary: An equivalence class $b_{E}$ of a type-definable equivalence relation $E$.

- Example: ' $|x-y|$ is infinitesimal' in RCF.
- Bounded closure: $b_{E} \in \operatorname{bdd}(A) \Leftrightarrow$ ' $\operatorname{Aut}(\mathbb{M} / A) \cdot b_{E}$ is small'
- Reasonable definition:

$$
b \underset{A}{\downarrow}{ }^{\mathrm{b}} c \Leftrightarrow \operatorname{bdd}(A b) \cap \operatorname{bdd}(A c)=\operatorname{bdd}(A)
$$

- Good news: Full existence in arbitrary theories (Conant-H.).
- Bad news: Somewhat infinitary. Doesn't seem to mean much in arbitrary theories,


## Hyperimaginaries

Hyperimaginary: An equivalence class $b_{E}$ of a type-definable equivalence relation $E$.

- Example: ' $|x-y|$ is infinitesimal' in RCF.
- Bounded closure: $b_{E} \in \operatorname{bdd}(A) \Leftrightarrow$ ' $\operatorname{Aut}(\mathbb{M} / A) \cdot b_{E}$ is small'
- Reasonable definition:

$$
b \underset{A}{\downarrow^{\mathrm{b}}} c \Leftrightarrow \operatorname{bdd}(A b) \cap \operatorname{bdd}(A c)=\operatorname{bdd}(A)
$$

- Good news: Full existence in arbitrary theories (Conant-H.).
- Bad news: Somewhat infinitary. Doesn't seem to mean much in arbitrary theories, but it does mean something:


## Hyperimaginaries

Hyperimaginary: An equivalence class $b_{E}$ of a type-definable equivalence relation $E$.

- Example: ' $|x-y|$ is infinitesimal' in RCF.
- Bounded closure: $b_{E} \in \operatorname{bdd}(A) \Leftrightarrow$ ' $\operatorname{Aut}(\mathbb{M} / A) \cdot b_{E}$ is small'
- Reasonable definition:

$$
b \underset{A}{\downarrow} c \Leftrightarrow \operatorname{bdd}(A b) \cap \operatorname{bdd}(A c)=\operatorname{bdd}(A)
$$

- Good news: Full existence in arbitrary theories (Conant-H.).
- Bad news: Somewhat infinitary. Doesn't seem to mean much in arbitrary theories, but it does mean something:


## Theorem (essentially Adler?)

( $T$ simple) $\left(b_{i}\right)_{i \in l}$ is a Morley sequence over $A$ iff it is a total $\downarrow^{\text {b }}$-Morley sequence over $A$.

## Hyperimaginaries

Hyperimaginary: An equivalence class $b_{E}$ of a type-definable equivalence relation $E$.

- Example: ' $|x-y|$ is infinitesimal' in RCF.
- Bounded closure: $b_{E} \in \operatorname{bdd}(A) \Leftrightarrow$ ' $\operatorname{Aut}(\mathbb{M} / A) \cdot b_{E}$ is small'
- Reasonable definition:

$$
b \underset{A}{\downarrow} c \Leftrightarrow \operatorname{bdd}(A b) \cap \operatorname{bdd}(A c)=\operatorname{bdd}(A)
$$

- Good news: Full existence in arbitrary theories (Conant-H.).
- Bad news: Somewhat infinitary. Doesn't seem to mean much in arbitrary theories, but it does mean something:


## Theorem (essentially Adler?)

( $T$ simple) $\left(b_{i}\right)_{i \in l}$ is a Morley sequence over $A$ iff it is a total $\downarrow^{\text {b }}$-Morley sequence over $A$.

With elimination of hyperimaginaries we can replace $\downarrow^{\text {b }}$ with $\downarrow^{\text {a }}$.

## Ultraimaginaries

Ultraimaginary: An equivalence class $b_{E}$ of an invariant equivalence relation $E$.

## Ultraimaginaries

Ultraimaginary: An equivalence class $b_{E}$ of an invariant equivalence relation $E$.

- Example: ' $|x-y|$ is finite' in RCF.


## Ultraimaginaries

Ultraimaginary: An equivalence class $b_{E}$ of an invariant equivalence relation $E$.

- Example: ' $|x-y|$ is finite’ in RCF.
- Bounded closure: $b_{E} \in \operatorname{bdd}^{\mathrm{u}}(A) \Leftrightarrow{ }^{\prime} \operatorname{Aut}(\mathbb{M} / A) \cdot b_{E}$ is small'


## Ultraimaginaries

Ultraimaginary: An equivalence class $b_{E}$ of an invariant equivalence relation $E$.

- Example: ‘ $|x-y|$ is finite' in RCF.
- Bounded closure: $b_{E} \in \operatorname{bdd}^{\mathrm{u}}(A) \Leftrightarrow{ }^{\prime} \operatorname{Aut}(\mathbb{M} / A) \cdot b_{E}$ is small'
- Reasonable(?) definition:

$$
b \underset{A}{\downarrow^{\mathrm{bu}}} c \Leftrightarrow \operatorname{bdd}^{\mathrm{u}}(A b) \cap \operatorname{bdd}^{\mathrm{u}}(A c)=\operatorname{bdd}^{\mathrm{u}}(A)
$$

## Ultraimaginaries

Ultraimaginary: An equivalence class $b_{E}$ of an invariant equivalence relation $E$.

- Example: ‘ $|x-y|$ is finite' in RCF.
- Bounded closure: $b_{E} \in \operatorname{bdd}^{\mathrm{u}}(A) \Leftrightarrow{ }^{\prime} \operatorname{Aut}(\mathbb{M} / A) \cdot b_{E}$ is small'
- Reasonable(?) definition:

$$
b \underset{A}{\downarrow^{\mathrm{bu}}} c \Leftrightarrow \operatorname{bdd}^{\mathrm{u}}(A b) \cap \operatorname{bdd}^{\mathrm{u}}(A c)=\operatorname{bdd}^{\mathrm{u}}(A)
$$

- Bad news:


## Ultraimaginaries

Ultraimaginary: An equivalence class $b_{E}$ of an invariant equivalence relation $E$.

- Example: ‘ $|x-y|$ is finite' in RCF.
- Bounded closure: $b_{E} \in \operatorname{bdd}^{\mathrm{u}}(A) \Leftrightarrow{ }^{\prime} \operatorname{Aut}(\mathbb{M} / A) \cdot b_{E}$ is small'
- Reasonable(?) definition:

$$
b \underset{A}{\downarrow^{\mathrm{bu}}} c \Leftrightarrow \operatorname{bdd}^{\mathrm{u}}(A b) \cap \operatorname{bdd}^{\mathrm{u}}(A c)=\operatorname{bdd}^{\mathrm{u}}(A)
$$

- Bad news: No compactness,


## Ultraimaginaries

Ultraimaginary: An equivalence class $b_{E}$ of an invariant equivalence relation $E$.

- Example: ‘ $|x-y|$ is finite' in RCF.
- Bounded closure: $b_{E} \in \operatorname{bdd}^{\mathrm{u}}(A) \Leftrightarrow{ }^{\prime} \operatorname{Aut}(\mathbb{M} / A) \cdot b_{E}$ is small'
- Reasonable(?) definition:

$$
b \underset{A}{\downarrow^{\mathrm{bu}}} c \Leftrightarrow \operatorname{bdd}^{\mathrm{u}}(A b) \cap \operatorname{bdd}^{\mathrm{u}}(A c)=\operatorname{bdd}^{\mathrm{u}}(A)
$$

■ Bad news: No compactness, highly infinitary,

## Ultraimaginaries

Ultraimaginary: An equivalence class $b_{E}$ of an invariant equivalence relation $E$.

- Example: ‘ $|x-y|$ is finite' in RCF.
- Bounded closure: $b_{E} \in \operatorname{bdd}^{\mathrm{u}}(A) \Leftrightarrow{ }^{\prime} \operatorname{Aut}(\mathbb{M} / A) \cdot b_{E}$ is small'
- Reasonable(?) definition:

$$
b \underset{A}{\downarrow^{\mathrm{bu}}} c \Leftrightarrow \operatorname{bdd}^{\mathrm{u}}(A b) \cap \operatorname{bdd}^{\mathrm{u}}(A c)=\operatorname{bdd}^{\mathrm{u}}(A)
$$

■ Bad news: No compactness, highly infinitary, generally sketchy, etc.

## Ultraimaginaries

Ultraimaginary: An equivalence class $b_{E}$ of an invariant equivalence relation $E$.

- Example: ' $|x-y|$ is finite’ in RCF.
- Bounded closure: $b_{E} \in \operatorname{bdd}^{\mathrm{u}}(A) \Leftrightarrow{ }^{\prime} \operatorname{Aut}(\mathbb{M} / A) \cdot b_{E}$ is small'
- Reasonable(?) definition:

$$
b \underset{A}{\downarrow^{\mathrm{bu}}} c \Leftrightarrow \operatorname{bdd}^{\mathrm{u}}(A b) \cap \operatorname{bdd}^{\mathrm{u}}(A c)=\operatorname{bdd}^{\mathrm{u}}(A)
$$

■ Bad news: No compactness, highly infinitary, generally sketchy, etc.

- Good news: $\downarrow^{\text {bu }}$ definitely means something.


## What something does $\downarrow^{\text {bu }}$ mean?

$\operatorname{Autf}(\mathbb{M} / A)$ is the group generated by

$$
\bigcup\{\operatorname{Aut}(\mathbb{M} / M): A \subseteq M \models T\}
$$

## What something does $\downarrow^{\text {bu }}$ mean?

$\operatorname{Autf}(\mathbb{M} / A)$ is the group generated by

$$
\bigcup\{\operatorname{Aut}(\mathbb{M} / M): A \subseteq M \models T\}
$$

$b \equiv{ }_{A}^{L} b^{\prime}$ iff $b^{\prime} \in \operatorname{Autf}(\mathbb{M} / A) \cdot b$.

## What something does $\downarrow^{\text {bu }}$ mean?

$\operatorname{Autf}(\mathbb{M} / A)$ is the group generated by

$$
\bigcup\{\operatorname{Aut}(\mathbb{M} / M): A \subseteq M \models T\}
$$

$b \equiv{ }_{A}^{L} b^{\prime}$ iff $b^{\prime} \in \operatorname{Autf}(\mathbb{M} / A) \cdot b$.

## Theorem (essentially Wagner)

## TFAE:

- $b \downarrow_{A}^{b u} c$


## What something does $\downarrow^{\text {bu }}$ mean?

$\operatorname{Autf}(\mathbb{M} / A)$ is the group generated by

$$
\bigcup\{\operatorname{Aut}(\mathbb{M} / M): A \subseteq M \models T\}
$$

$b \equiv{ }_{A}^{L} b^{\prime}$ iff $b^{\prime} \in \operatorname{Autf}(\mathbb{M} / A) \cdot b$.

## Theorem (essentially Wagner)

## TFAE:

- $b \downarrow_{A}^{b u} c$
- $\operatorname{Autf}(\mathbb{M} / A)$ is generated by $\operatorname{Autf}(\mathbb{M} / A b) \cup \operatorname{Autf}(\mathbb{M} / A c)$.


## What something does $\downarrow^{\text {bu }}$ mean?

$\operatorname{Autf}(\mathbb{M} / A)$ is the group generated by

$$
\bigcup\{\operatorname{Aut}(\mathbb{M} / M): A \subseteq M \models T\}
$$

$b \equiv{ }_{A}^{L} b^{\prime}$ iff $b^{\prime} \in \operatorname{Autf}(\mathbb{M} / A) \cdot b$.

## Theorem (essentially Wagner)

## TFAE:

- $b \downarrow_{A}^{b u} c$
- $\operatorname{Autf}(\mathbb{M} / A)$ is generated by $\operatorname{Autf}(\mathbb{M} / A b) \cup \operatorname{Autf}(\mathbb{M} / A c)$.
- (Walking) For any $b^{\prime} \equiv_{A}^{L} b$, we have the configuration

$$
\begin{array}{rlllllllll}
b_{0} & \equiv_{A c_{1}}^{\mathrm{L}} & b_{2} & \equiv_{A c_{3}}^{\mathrm{L}} & b_{4} & \equiv_{A c_{5}}^{\mathrm{L}} & \cdots & b_{n-2} & \equiv_{A c_{n-1}}^{\mathrm{L}} & b_{n} \\
& c_{1} & \equiv & { }_{A b_{2}} & c_{3} & \equiv_{A b_{4}}^{\mathrm{L}} & c_{5} & \equiv_{A b_{6}}^{\mathrm{L}} & \cdots & c_{n-1}
\end{array}
$$

where $b_{0}=b, c_{1}=c$, and $b_{n}=b^{\prime}$.

## What are total $\downarrow^{\text {bu }}$-Morley sequences? I

## Since $\downarrow^{\text {bu }}$ has semantic consequences, are total $\downarrow^{\text {bu }}$-Morley sequences special?

## What are total $\downarrow^{\text {bu }}$-Morley sequences? I

Since $\downarrow^{\text {bu }}$ has semantic consequences, are total $\downarrow^{\text {bu }}$-Morley sequences special?
$\square I \sim_{A} J$ if $I+J$ is $A$-indiscernible.

## What are total $\downarrow^{\text {bu }}$-Morley sequences? I

Since $\downarrow^{\text {bu }}$ has semantic consequences, are total $\downarrow^{\text {bu }}-$ Morley sequences special?
$\square I \sim_{A} J$ if $I+J$ is $A$-indiscernible.

- $\approx_{A}$ is the equivalence relation on infinite $A$-indiscernible sequences generated by $\sim_{A}$.


## What are total $\downarrow^{\text {bu }}$-Morley sequences? I

Since $\downarrow^{\text {bu }}$ has semantic consequences, are total $\downarrow^{\text {bu }}-$ Morley sequences special?
$■ I \sim_{A} J$ if $I+J$ is $A$-indiscernible.

- $\approx_{A}$ is the equivalence relation on infinite $A$-indiscernible sequences generated by $\sim_{A}$.
- Shelah's definition in early simplicity theory: $I$ is based on $A$ if $I \equiv_{A} J \Leftrightarrow I \approx_{A} J$.


## What are total $\downarrow^{\text {bu }}$-Morley sequences? II

Canonical witnessing configuration: $I \approx_{A} J$ if and only if we have

$$
I_{0}
$$

$$
J_{1}
$$

$I_{2}$

$I_{4}$ $\qquad$

$$
\vdots
$$

$$
\longrightarrow J_{n}
$$

where $I_{0}=I, J_{n}=J$, and $I_{i}+J_{i+1}$ and $I_{i+2}+J_{i+1}$ are $A$-indiscernible.

## What are total $\downarrow^{\text {bu }}$-Morley sequences? II

Canonical witnessing configuration: $I \approx_{A} J$ if and only if we have

$$
I_{0}
$$

$$
J_{1}
$$

$I_{2}$

$I_{4}$

$$
J_{n}
$$

where $I_{0}=I, J_{n}=J$, and $I_{i}+J_{i+1}$ and $I_{i+2}+J_{i+1}$ are $A$-indiscernible.

## Theorem (H.)

$\left(b_{i}\right)_{i<\omega}$ is a total $\downarrow^{\text {bu }}$-Morley sequence over $A$ iff it is based on $\operatorname{bdd}^{\mathrm{u}}(A)$ (i.e. $I \equiv_{A}^{L} b_{<\omega} \Leftrightarrow I \approx_{A} b_{<\omega}$ ).

Note: $I \equiv_{\text {bdd" }}(A) J$ iff $I \equiv_{A}^{\mathrm{L}} J$.

## The two questions

## Q1: Full existence?

Given (real) $A, b$, and $c$, can we find $b^{\prime} \equiv{ }_{A} b$ such that $b^{\prime} \downarrow_{A}^{\text {bu }} c$ ?

## Q1: Full existence?

Given (real) $A, b$, and $c$, can we find $b^{\prime} \equiv{ }_{A} b$ such that $b^{\prime} \downarrow_{A}^{\text {bu }} c$ ?
Theorem (H.)
Yes.

## Q1: Full existence?

Given (real) $A, b$, and $c$, can we find $b^{\prime} \equiv{ }_{A} b$ such that $b^{\prime} \downarrow_{A}^{\text {bu }} c$ ?

## Theorem (H.)

Yes.

## Proof.

Horrible indiscernible tree combinatorics à la Kaplan-Ramsey.

## Q1: Full existence?

Given (real) $A, b$, and $c$, can we find $b^{\prime} \equiv{ }_{A} b$ such that $b^{\prime} \downarrow_{A}^{\text {bu }} c$ ?

## Theorem (H.)

Yes.

## Proof.

Horrible indiscernible tree combinatorics à la Kaplan-Ramsey.

## Relationship with non-dividing

There is a 'chain condition': If $\left(b_{i}\right)_{i<\omega}$ is a $\downarrow^{\text {bu }}$-Morley sequence over $A$ that is $A c$-indiscernible, then $c \downarrow_{A}^{b u} b_{0}$.

## Relationship with non-dividing

There is a 'chain condition': If $\left(b_{i}\right)_{i<\omega}$ is a $\downarrow^{\text {bu }}$-Morley sequence over $A$ that is $A c$-indiscernible, then $c \downarrow_{A}^{b u} b_{0}$.

## Corollary (H.)

$\downarrow^{d} \Rightarrow \downarrow^{\text {bu }}$

## Relationship with non-dividing

There is a 'chain condition': If $\left(b_{i}\right)_{i<\omega}$ is a $\downarrow^{\text {bu }}$-Morley sequence over $A$ that is $A c$-indiscernible, then $c \downarrow_{A}^{b u} b_{0}$.

## Corollary (H.)

$$
\downarrow^{d} \Rightarrow \downarrow^{\text {bu }}
$$

## Proof.

Suppose $c \downarrow_{A}^{d} b$.

## Relationship with non-dividing

There is a 'chain condition': If $\left(b_{i}\right)_{i<\omega}$ is a $\downarrow^{\text {bu }}$-Morley sequence over $A$ that is $A c$-indiscernible, then $c \downarrow_{A}^{b u} b_{0}$.

## Corollary (H.)

$$
\downarrow^{d} \Rightarrow \downarrow^{\text {bu }}
$$

## Proof.

Suppose $c \downarrow_{A}^{\mathrm{d}} b$. Find a $\downarrow^{\text {bu }}-$ Morley sequence $b_{<\omega}$ over $A$ with $b_{0}=b$.

## Relationship with non-dividing

There is a 'chain condition': If $\left(b_{i}\right)_{i<\omega}$ is a $\downarrow^{\text {bu }}$-Morley sequence over $A$ that is $A c$-indiscernible, then $c \downarrow_{A}^{b u} b_{0}$.

## Corollary (H.)

$$
\downarrow^{d} \Rightarrow \downarrow^{b u}
$$

## Proof.

Suppose $c \downarrow_{A}^{\mathrm{d}} b$. Find a $\downarrow^{\text {bu }}$-Morley sequence $b_{<\omega}$ over $A$ with $b_{0}=b$. Since $c{ }_{A}^{d}{ }_{A} b$, we may assume that $b_{<\omega}$ is $A c$-indiscernible.

## Relationship with non-dividing

There is a 'chain condition': If $\left(b_{i}\right)_{i<\omega}$ is a $\downarrow^{\text {bu }}$-Morley sequence over $A$ that is $A c$-indiscernible, then $c \downarrow_{A}^{b u} b_{0}$.

## Corollary (H.)

$\downarrow^{d} \Rightarrow \downarrow^{\text {bu }}$

## Proof.

Suppose $c \downarrow_{A}^{\mathrm{d}} b$. Find a $\downarrow^{\text {bu }}$-Morley sequence $b_{<\omega}$ over $A$ with $b_{0}=b$. Since $c \downarrow_{A}^{d} b$, we may assume that $b_{<\omega}$ is $A c$-indiscernible. By the chain condition, $c{\underset{A}{b}}_{\text {bu }} b$.

## Relationship with non-dividing

There is a 'chain condition': If $\left(b_{i}\right)_{i<\omega}$ is a $\downarrow^{\text {bu }}$-Morley sequence over $A$ that is $A c$-indiscernible, then $c \downarrow_{A}^{b u} b_{0}$.

## Corollary (H.)

$$
\downarrow^{d} \Rightarrow \downarrow^{b u}
$$

## Proof.

Suppose $c \downarrow_{A}^{\mathrm{d}} b$. Find a $\downarrow^{\text {bu }}$-Morley sequence $b_{<\omega}$ over $A$ with $b_{0}=b$. Since $c \downarrow_{A}^{d} b$, we may assume that $b_{<\omega}$ is $A c$-indiscernible. By the chain condition, $c \downarrow_{A}^{\text {bu }} b$.

## Corollary of Corollary

In a simple theory, $\left(b_{i}\right)_{i<\omega}$ is a Morley sequence over $A$ if and only if it is a total $\downarrow^{\text {bu }}$-Morley sequence over $A$.

## In NSOP 1 theories

## What about $\mathrm{NSOP}_{1}$ theories?

## In NTP ${ }_{1}$ theories

## What about NTP $_{1}$ theories?

## In NTP ${ }_{1}$ theories

## What about NTP ${ }_{1}$ theories?

## Proposition (H.)

( $T$ NTP $_{1}$ ) If $I$ is a tree Morley sequence over $M \models T$, then $I$ is a total $\downarrow^{\text {bu }}$-Morley sequence over $M$.

## In NTP ${ }_{1}$ theories

## What about NTP ${ }_{1}$ theories?

## Proposition (H.)

( $T$ NTP $_{1}$ ) If $I$ is a tree Morley sequence over $M \models T$, then $I$ is a total $\downarrow^{\text {bu }}$-Morley sequence over $M$.

## Proof.

Fix $J \equiv{ }_{M} l$.

## In NTP ${ }_{1}$ theories

## What about NTP ${ }_{1}$ theories?

## Proposition (H.)

( $T$ NTP $_{1}$ ) If $I$ is a tree Morley sequence over $M \models T$, then $I$ is a total $\downarrow^{\text {bu }}$-Morley sequence over $M$.

## Proof.

Fix $J \equiv_{M} I$. Find $K \equiv_{M} I$ with $K \downarrow_{M}^{K} I J$.

## In NTP ${ }_{1}$ theories

## What about NTP ${ }_{1}$ theories?

## Proposition (H.)

( $T$ NTP $_{1}$ ) If $I$ is a tree Morley sequence over $M \models T$, then $I$ is a total $\downarrow^{\text {bu }}$-Morley sequence over $M$.

## Proof.

Fix $J \equiv_{M} I$. Find $K \equiv_{M} I$ with $K \downarrow_{M}^{K} I J$. By the independence theorem, we can find $I^{*}$ and $J^{*}$ such that $I+I^{*}, K+I^{*}, K+J^{*}$, and $J+J^{*}$ are all $M$-indiscernible, so $I \approx_{M} J$.

## In NTP ${ }_{1}$ theories

## What about NTP ${ }_{1}$ theories?

## Proposition (H.)

( $T$ NTP $_{1}$ ) If $I$ is a tree Morley sequence over $M \models T$, then $I$ is a total $\downarrow^{\text {bu }}$-Morley sequence over $M$.

## Proof.

Fix $J \equiv_{M} I$. Find $K \equiv_{M} I$ with $K \downarrow_{M}^{K} I J$. By the independence theorem, we can find $I^{*}$ and $J^{*}$ such that $I+I^{*}, K+I^{*}, K+J^{*}$, and $J+J^{*}$ are all $M$-indiscernible, so $I \approx_{M} J$.

Converse?

## In NTP ${ }_{1}$ theories

## What about NTP ${ }_{1}$ theories?

## Proposition (H.)

( $T$ NTP $_{1}$ ) If $I$ is a tree Morley sequence over $M \models T$, then $I$ is a total $\downarrow^{\text {bu }}$-Morley sequence over $M$.

## Proof.

Fix $J \equiv_{M} I$. Find $K \equiv_{M} I$ with $K \downarrow_{M}^{K} I J$. By the independence theorem, we can find $I^{*}$ and $J^{*}$ such that $I+I^{*}, K+I^{*}, K+J^{*}$, and $J+J^{*}$ are all $M$-indiscernible, so $I \approx_{M} J$.

- Converse?
- Odd observation: In stable theories, you get a ' $\sim_{A}$-distance' of 2 . In simple theories, you get 3 . And in NTP ${ }_{1}$ theories, you get 4 .


## Q2: Total $\downarrow^{\text {bu }}$-Morley sequences?

Given $A$ and $b$, can we find a total $\downarrow^{\text {bu }}-$ Morley sequence $\left(b_{i}\right)_{i<\omega}$ over $A$ with $b_{0}=b$ ?

## Q2: Total $\downarrow^{\text {bu }}$-Morley sequences?

Given $A$ and $b$, can we find a total $\downarrow^{\text {bu }}$-Morley sequence $\left(b_{i}\right)_{i<\omega}$ over $A$ with $b_{0}=b$ ?

Theorem (H.)
Yes,

## Q2: Total $\downarrow^{\text {bu }}$-Morley sequences?

Given $A$ and $b$, can we find a total $\downarrow^{\text {bu }}$-Morley sequence $\left(b_{i}\right)_{i<\omega}$ over $A$ with $b_{0}=b$ ?

Theorem (H.)
Yes, if we have an Erdős cardinal $\kappa>|A b|+|T|$.

## Q2: Total $\downarrow^{\text {bu }}$-Morley sequences?

Given $A$ and $b$, can we find a total $\downarrow^{\text {bu }}$-Morley sequence $\left(b_{i}\right)_{i<\omega}$ over $A$ with $b_{0}=b$ ?

## Theorem (H.)

Yes, if we have an Erdős cardinal $\kappa>|A b|+|T|$.

## Proof.

More horrible indiscernible tree combinatorics à la Kaplan-Ramsey but with some large cardinal infinitary Ramsey theory at the end.

## Q2: Total $\downarrow^{\text {bu }}$-Morley sequences?

Given $A$ and $b$, can we find a total $\downarrow^{\text {bu }}$-Morley sequence $\left(b_{i}\right)_{i<\omega}$ over $A$ with $b_{0}=b$ ?

## Theorem (H.)

Yes, if we have an Erdős cardinal $\kappa>|A b|+|T|$.

## Proof.

More horrible indiscernible tree combinatorics à la Kaplan-Ramsey but with some large cardinal infinitary Ramsey theory at the end.

- Does this actually need large cardinals?


## Q2: Total $\downarrow^{\text {bu }}$-Morley sequences?

Given $A$ and $b$, can we find a total $\downarrow^{\text {bu }}$-Morley sequence $\left(b_{i}\right)_{i<\omega}$ over $A$ with $b_{0}=b$ ?

## Theorem (H.)

Yes, if we have an Erdős cardinal $\kappa>|A b|+|T|$.

## Proof.

More horrible indiscernible tree combinatorics à la Kaplan-Ramsey but with some large cardinal infinitary Ramsey theory at the end.

- Does this actually need large cardinals?
- Without any set theoretic hypotheses, we can get a sequence $\left(b_{i}\right)_{i<\omega}$ such that $b_{<i} \downarrow_{A}^{\text {bu }} b_{\geq i}$ for each $i<\omega$.


## Applications

## Strong witnesses of Lascar strong type

Fix $A$ and $b$ and suppose there is a total $\downarrow^{\text {bu }}$-Morley sequence $I \ni b$. For any $b^{\prime}$ with $b^{\prime} \equiv{ }_{A}^{\mathrm{L}} b$, we have the configuration

with $I_{0}=I, b^{\prime} \in I_{n}$, and $I_{i}+J_{i+1}$ and $I_{i+2}+J_{i+1} A$-indiscernible for all $i$.

## Strong witnesses of Lascar strong type

Fix $A$ and $b$ and suppose there is a total $\downarrow^{\text {bu }}$-Morley sequence $I \ni b$. For any $b^{\prime}$ with $b^{\prime} \equiv{ }_{A}^{\mathrm{L}} b$, we have the configuration

$I_{4}$

with $I_{0}=I, b^{\prime} \in I_{n}$, and $I_{i}+J_{i+1}$ and $I_{i+2}+J_{i+1} A$-indiscernible for all $i$.
This is similar to a configuration in the proof of the independence theorem.

## Weak amalgamation I

Variants of the independence theorem can generally be phrased like this:

## Weak amalgamation I

Variants of the independence theorem can generally be phrased like this:
Theorems (Shelah, Hrushovski, Kim-Pillay, Ben Yaacov-Chernikov, Kaplan-Ramsey, Simon, Dobrowolski-Kim-Ramsey, etc.)
( $T$ nice, maybe) Let $\Sigma(x)$ be an $A$-invariant partial type satisfying a chain condition. Assume that $c \models \Sigma \upharpoonright A a b$ and $b \equiv \equiv_{A}^{L} b^{\prime}$ and that $a, b$, and $b^{\prime}$ are sufficiently independent of one another. Then there exists a $c^{\prime} \models \Sigma \upharpoonright A a b^{\prime}$ such that $a c^{\prime} \equiv_{A} a c$ and $b^{\prime} c^{\prime} \equiv_{A} b c$.

## Weak amalgamation I

Variants of the independence theorem can generally be phrased like this:
Theorems (Shelah, Hrushovski, Kim-Pillay, Ben Yaacov-Chernikov, Kaplan-Ramsey, Simon, Dobrowolski-Kim-Ramsey, etc.)
( $T$ nice, maybe) Let $\Sigma(x)$ be an $A$-invariant partial type satisfying a chain condition. Assume that $c \models \Sigma \upharpoonright A a b$ and $b \equiv \equiv_{A}^{L} b^{\prime}$ and that $a, b$, and $b^{\prime}$ are sufficiently independent of one another. Then there exists a $c^{\prime} \models \Sigma \upharpoonright A a b^{\prime}$ such that $a c^{\prime} \equiv_{A} a c$ and $b^{\prime} c^{\prime} \equiv_{A} b c$.


## Weak amalgamation I

Variants of the independence theorem can generally be phrased like this:
Theorems (Shelah, Hrushovski, Kim-Pillay, Ben Yaacov-Chernikov, Kaplan-Ramsey, Simon, Dobrowolski-Kim-Ramsey, etc.)
( $T$ nice, maybe) Let $\Sigma(x)$ be an $A$-invariant partial type satisfying a chain condition. Assume that $c \models \Sigma \upharpoonright A a b$ and $b \equiv \equiv_{A}^{L} b^{\prime}$ and that $a, b$, and $b^{\prime}$ are sufficiently independent of one another. Then there exists a $c^{\prime} \models \Sigma \upharpoonright A a b^{\prime}$ such that $a c^{\prime} \equiv_{A} a c$ and $b^{\prime} c^{\prime} \equiv_{A} b c$.

$b^{\prime}$

## Weak amalgamation I

Variants of the independence theorem can generally be phrased like this:
Theorems (Shelah, Hrushovski, Kim-Pillay, Ben Yaacov-Chernikov, Kaplan-Ramsey, Simon, Dobrowolski-Kim-Ramsey, etc.)
( $T$ nice, maybe) Let $\Sigma(x)$ be an $A$-invariant partial type satisfying a chain condition. Assume that $c \models \Sigma \upharpoonright A a b$ and $b \equiv \equiv_{A}^{L} b^{\prime}$ and that $a, b$, and $b^{\prime}$ are sufficiently independent of one another. Then there exists a $c^{\prime} \models \Sigma \upharpoonright A a b^{\prime}$ such that $a c^{\prime} \equiv_{A} a c$ and $b^{\prime} c^{\prime} \equiv_{A} b c$.

$\Sigma(x)$ is often a generically prime filter: If $\left(b_{i}\right)_{i<\omega}$ is $A$-indiscernible and $\Sigma(x) \vdash \varphi\left(x, b_{0}\right) \vee \varphi\left(x, b_{1}\right)$, then $\Sigma(x) \vdash \varphi\left(x, b_{0}\right)$.

## Weak amalgamation II: Most of the time

Can use total $\downarrow^{\text {bu }}$-Morley sequences for notion of independence, but still need a strong chain condition, namely generic primality.

## Weak amalgamation II: Most of the time

Can use total $\downarrow^{\text {bu }}$-Morley sequences for notion of independence, but still need a strong chain condition, namely generic primality.

## Proposition (H.)

Let $\Sigma(x)$ be $A$-invariant and generically prime over $A$. For any $a, I, I^{\prime}$, and c, if

- $I \equiv{ }_{A}^{\mathrm{L}} I^{\prime}$ are total $\downarrow^{\text {bu }}$-Morley sequences over $A$,
- $c \vDash \Sigma \mid A a b$ for all $b \in I$, and
- $|I|,\left|I^{\prime}\right|>2^{|A a b c|+|T|}$,
then there are $b \in I, b^{\prime} \in I^{\prime}$, and $c^{\prime} \models \Sigma \upharpoonright A a b^{\prime}$ such that $a c^{\prime} \equiv_{A} a c$ and $b^{\prime} c^{\prime} \equiv_{A} b c$.


## Weak amalgamation II: Most of the time

Can use total $\downarrow^{\text {bu }}$-Morley sequences for notion of independence, but still need a strong chain condition, namely generic primality.

## Proposition (H.)

Let $\Sigma(x)$ be $A$-invariant and generically prime over $A$. For any $a, I, I^{\prime}$, and c, if

- $I \equiv{ }_{A}^{\mathrm{L}} I^{\prime}$ are total $\downarrow^{\text {bu }}$-Morley sequences over $A$,
- $c \vDash \Sigma \mid A a b$ for all $b \in I$, and
- $|I|,\left|I^{\prime}\right|>2^{|A a b c|+|T|}$,
then there are $b \in I, b^{\prime} \in I^{\prime}$, and $c^{\prime} \models \Sigma \upharpoonright A a b^{\prime}$ such that $a c^{\prime} \equiv_{A} a c$ and $b^{\prime} c^{\prime} \equiv{ }_{A} b c$.



## Weak amalgamation II: Most of the time

Can use total $\downarrow^{\text {bu }}$-Morley sequences for notion of independence, but still need a strong chain condition, namely generic primality.

## Proposition (H.)

Let $\Sigma(x)$ be $A$-invariant and generically prime over $A$. For any $a, I, I^{\prime}$, and c, if

- $I \equiv{ }_{A}^{\mathrm{L}} I^{\prime}$ are total $\downarrow^{\text {bu }}$-Morley sequences over $A$,
- $c \models \Sigma \upharpoonright A a b$ for all $b \in I$, and
- $|I|,\left|I^{\prime}\right|>2^{|A a b c|+|T|}$,
then there are $b \in I, b^{\prime} \in I^{\prime}$, and $c^{\prime} \models \Sigma \upharpoonright A a b^{\prime}$ such that $a c^{\prime} \equiv_{A} a c$ and $b^{\prime} c^{\prime} \equiv{ }_{A} b c$.



## Weak amalgamation III: Off by just one (large) step

## Proposition (H.)

Let $\Sigma(x)$ be $A$-invariant and generically prime over $A$. For any $a, b \equiv_{A}^{L} b^{\prime}$, and $c$, if

- c $\models \Sigma \upharpoonright A a b$ and
- there is a total $\downarrow^{\text {bu }}$-Morley sequence $I \ni b$ over $A$ that is Aa-indiscernible,
then there are $b^{\prime \prime}$ and $c^{\prime} \models \Sigma \upharpoonleft A a b^{\prime \prime}$ such that $a c^{\prime} \equiv_{A} a c, b^{\prime \prime} c^{\prime} \equiv_{A} b c$, and $d_{A}^{\mathrm{L}}\left(b^{\prime}, b^{\prime \prime}\right) \leq 1$.


## Weak amalgamation III: Off by just one (large) step

## Proposition (H.)

Let $\Sigma(x)$ be $A$-invariant and generically prime over $A$. For any $a, b \equiv_{A}^{L} b^{\prime}$, and $c$, if

- c $\models \Sigma \upharpoonright A a b$ and
- there is a total $\downarrow^{\text {bu }}$-Morley sequence $I \ni b$ over $A$ that is Aa-indiscernible,
then there are $b^{\prime \prime}$ and $c^{\prime} \models \Sigma \upharpoonleft A a b^{\prime \prime}$ such that $a c^{\prime} \equiv_{A} a c, b^{\prime \prime} c^{\prime} \equiv_{A} b c$, and $d_{A}^{\mathrm{L}}\left(b^{\prime}, b^{\prime \prime}\right) \leq 1$.



## Weak amalgamation III: Off by just one (large) step

## Proposition (H.)

Let $\Sigma(x)$ be $A$-invariant and generically prime over $A$. For any $a, b \equiv_{A}^{L} b^{\prime}$, and $c$, if

- $c \models \Sigma \upharpoonright A a b$ and
- there is a total $\downarrow^{\text {bu }}$-Morley sequence $I \ni b$ over $A$ that is Aa-indiscernible,
then there are $b^{\prime \prime}$ and $c^{\prime} \models \Sigma \upharpoonleft A a b^{\prime \prime}$ such that $a c^{\prime} \equiv_{A} a c, b^{\prime \prime} c^{\prime} \equiv_{A} b c$, and $d_{A}^{\mathrm{L}}\left(b^{\prime}, b^{\prime \prime}\right) \leq 1$.



## Weak amalgamation III: Off by just one (large) step

## Proposition (H.)

Let $\Sigma(x)$ be $A$-invariant and generically prime over $A$. For any $a, b \equiv_{A}^{L} b^{\prime}$, and $c$, if

- $c \models \Sigma \upharpoonright A a b$ and
- there is a total $\downarrow^{\text {bu }}$-Morley sequence $I \ni b$ over $A$ that is Aa-indiscernible,
then there are $b^{\prime \prime}$ and $c^{\prime} \models \Sigma \upharpoonleft A a b^{\prime \prime}$ such that $a c^{\prime} \equiv_{A} a c, b^{\prime \prime} c^{\prime} \equiv_{A} b c$, and $d_{A}^{\mathrm{L}}\left(b^{\prime}, b^{\prime \prime}\right) \leq 1$.



Can we weaken the generic primality requirement?

## Thank you

