Bounded ultraimaginary independence

James Hanson

University of Maryland, College Park

March 26, 2023 2023 North American Annual Meeting of the ASL University of California, Irvine

Something for nothing: Independence in arbitrary theories

In tame contexts: Independence notion \Rightarrow Generic sequences

• Stable and simple: Non-forking \Rightarrow Morley sequences

- Stable and simple: Non-forking \Rightarrow Morley sequences
- NIP and NTP₂: Strict invariance \Rightarrow Strict Morley sequences

- Stable and simple: Non-forking \Rightarrow Morley sequences
- NIP and NTP₂: Strict invariance \Rightarrow Strict Morley sequences
- NTP₁(=NSOP₁): Non-Kim-forking \Rightarrow Tree Morley sequences

- Stable and simple: Non-forking \Rightarrow Morley sequences
- NIP and NTP₂: Strict invariance ⇒ Strict Morley sequences
- NTP₁(=NSOP₁): Non-Kim-forking \Rightarrow Tree Morley sequences
- Rosy: Non-þ-forking ⇒ þ-Morley sequences

In tame contexts: Independence notion \Rightarrow Generic sequences

- Stable and simple: Non-forking \Rightarrow Morley sequences
- NIP and NTP₂: Strict invariance \Rightarrow Strict Morley sequences
- NTP₁(=NSOP₁): Non-Kim-forking \Rightarrow Tree Morley sequences
- Rosy: Non-þ-forking ⇒ þ-Morley sequences

Given an independence notion \downarrow^* , two questions:

In tame contexts: Independence notion \Rightarrow Generic sequences

- Stable and simple: Non-forking \Rightarrow Morley sequences
- NIP and NTP₂: Strict invariance ⇒ Strict Morley sequences
- NTP₁(=NSOP₁): Non-Kim-forking \Rightarrow Tree Morley sequences
- Rosy: Non-þ-forking ⇒ þ-Morley sequences

Given an independence notion \downarrow^* , two questions:

Q1 Does \bigcup^* satisfy *full existence*?

In tame contexts: Independence notion \Rightarrow Generic sequences

- Stable and simple: Non-forking \Rightarrow Morley sequences
- NIP and NTP₂: Strict invariance ⇒ Strict Morley sequences
- NTP₁(=NSOP₁): Non-Kim-forking \Rightarrow Tree Morley sequences
- Rosy: Non-þ-forking ⇒ þ-Morley sequences

Given an independence notion \downarrow^* , two questions:

Q1 Does \bigcup^* satisfy *full existence*?

If so, we can build \bigcup^* -Morley sequences: $(b_i)_{i < \omega}$ s.t. $b_i \bigcup_{\Delta}^* b_{< i}$.

In tame contexts: Independence notion \Rightarrow Generic sequences

- Stable and simple: Non-forking \Rightarrow Morley sequences
- NIP and NTP₂: Strict invariance ⇒ Strict Morley sequences
- NTP₁(=NSOP₁): Non-Kim-forking \Rightarrow Tree Morley sequences
- Rosy: Non- \flat -forking $\Rightarrow \flat$ -Morley sequences

Given an independence notion \bigcup^* , two questions:

Q1 Does
$$\bigcup^*$$
 satisfy *full existence*?

- If so, we can build \bigcup^* -Morley sequences: $(b_i)_{i < \omega}$ s.t. $b_i \bigcup_{\Delta}^* b_{< i}$.
- Usually want a *total* $_^*$ -*Morley sequence*: $(b_i)_{i < \omega}$ s.t. if $I + J \equiv_A^{\text{EM}} b_{<\omega}$, then $J __A^* I$.

In tame contexts: Independence notion \Rightarrow Generic sequences

- Stable and simple: Non-forking \Rightarrow Morley sequences
- NIP and NTP₂: Strict invariance \Rightarrow Strict Morley sequences
- NTP₁(=NSOP₁): Non-Kim-forking \Rightarrow Tree Morley sequences
- Rosy: Non- \flat -forking $\Rightarrow \flat$ -Morley sequences

Given an independence notion \bigcup^* , two questions:

Q1 Does
$$\bigcup^*$$
 satisfy *full existence*?

- If so, we can build \bigcup^* -Morley sequences: $(b_i)_{i < \omega}$ s.t. $b_i \bigcup_{\Delta}^* b_{< i}$.
- Usually want a *total* \downarrow^* -Morley sequence: $(b_i)_{i < \omega}$ s.t. if $I + J \equiv_A^{\text{EM}} b_{<\omega}$, then $J \downarrow_A^* I$.

Q2 Can we build total \downarrow^* -Morley sequences?

Weakest 'reasonable' independence relation:

$$b \stackrel{\mathsf{l}}{\underset{A}{\downarrow}^{\mathsf{a}}} c \Leftrightarrow \operatorname{acl}(Ab) \cap \operatorname{acl}(Ac) = \operatorname{acl}(A)$$

Weakest 'reasonable' independence relation:

$$b \mathrel{\buildrel a}_A c \Leftrightarrow \operatorname{acl}(Ab) \cap \operatorname{acl}(Ac) = \operatorname{acl}(A)$$

■ Good news: ↓^a satisfies full existence in arbitrary theories (folklore for discrete? Conant-H. for continuous).

Weakest 'reasonable' independence relation:

$$b \stackrel{{}_{\scriptstyle \perp}}{_{\scriptscriptstyle A}} c \Leftrightarrow \operatorname{acl}(Ab) \cap \operatorname{acl}(Ac) = \operatorname{acl}(A)$$

- Good news: ↓^a satisfies full existence in arbitrary theories (folklore for discrete? Conant-H. for continuous).
- Bad news: \bigcup^{a} doesn't seem to mean much in arbitrary theories.

Hyperimaginary: An equivalence class b_E of a type-definable equivalence relation E.

Hyperimaginary: An equivalence class b_E of a type-definable equivalence relation E.

• Example: |x - y| is infinitesimal' in RCF.

Hyperimaginary: An equivalence class b_E of a type-definable equivalence relation E.

- Example: |x y| is infinitesimal' in RCF.
- Bounded closure: $b_E \in bdd(A) \Leftrightarrow Aut(\mathbb{M}/A) \cdot b_E$ is small'

Hyperimaginary: An equivalence class b_E of a type-definable equivalence relation E.

- Example: |x y| is infinitesimal' in RCF.
- Bounded closure: $b_E \in bdd(A) \Leftrightarrow Aut(\mathbb{M}/A) \cdot b_E$ is small'

Reasonable definition:

$$b \stackrel{{}_{\scriptstyle \ }}{\overset{{}_{\scriptstyle \ \ \ }}{\overset{{}_{\scriptstyle \ \ }}{\overset{{}_{\scriptstyle \ \ \ }}}{\overset{{}_{\scriptstyle \ \ \ \ }}{\overset{{}_{\scriptstyle \ \ }}{\overset{{}_{\scriptstyle \ \ }}{\overset{{}_{\scriptstyle \ \ }}}}}}}}}}}} } b \stackrel{{}_{\scriptstyle \ \ \ \ \ \ \ \ \ \ }}}{\overset{{}_{\scriptstyle \ \ }}{\overset{{}_{\scriptstyle \ \ }}}}}} bddd} (Ab) \cap bdd(Ac) = bdd(Ac)$$

Hyperimaginary: An equivalence class b_E of a type-definable equivalence relation E.

- Example: |x y| is infinitesimal' in RCF.
- Bounded closure: $b_E \in \mathsf{bdd}(A) \Leftrightarrow \mathsf{`Aut}(\mathbb{M}/A) \cdot b_E$ is small'
- Reasonable definition:

$$b \stackrel{{}_{\scriptstyle \ }}{\underset{\scriptstyle A}{\overset{}_{\scriptstyle \ }}} c \Leftrightarrow \mathsf{bdd}(Ab) \cap \mathsf{bdd}(Ac) = \mathsf{bdd}(A)$$

Good news: Full existence in arbitrary theories (Conant-H.).

Hyperimaginary: An equivalence class b_E of a type-definable equivalence relation E.

- Example: |x y| is infinitesimal' in RCF.
- Bounded closure: $b_E \in \mathsf{bdd}(A) \Leftrightarrow \mathsf{`Aut}(\mathbb{M}/A) \cdot b_E$ is small'
- Reasonable definition:

$$b \mathrel{igstyle h}_A^{\mathsf{b}} c \Leftrightarrow \mathsf{bdd}(Ab) \cap \mathsf{bdd}(Ac) = \mathsf{bdd}(A)$$

Good news: Full existence in arbitrary theories (Conant–H.).Bad news: Somewhat infinitary.

Hyperimaginary: An equivalence class b_E of a type-definable equivalence relation E.

- Example: |x y| is infinitesimal' in RCF.
- Bounded closure: $b_E \in \mathsf{bdd}(A) \Leftrightarrow \mathsf{`Aut}(\mathbb{M}/A) \cdot b_E$ is small'
- Reasonable definition:

$$b \mathrel{igstyle h}_A^{\mathsf{b}} c \Leftrightarrow \mathsf{bdd}(Ab) \cap \mathsf{bdd}(Ac) = \mathsf{bdd}(A)$$

- Good news: Full existence in arbitrary theories (Conant-H.).
- Bad news: Somewhat infinitary. Doesn't seem to mean much in arbitrary theories,

Hyperimaginary: An equivalence class b_E of a type-definable equivalence relation E.

- Example: |x y| is infinitesimal' in RCF.
- Bounded closure: $b_E \in \mathsf{bdd}(A) \Leftrightarrow \mathsf{`Aut}(\mathbb{M}/A) \cdot b_E$ is small'
- Reasonable definition:

$$b \mathrel{igstyle h}_A^{\mathrm{b}} c \Leftrightarrow \mathsf{bdd}(Ab) \cap \mathsf{bdd}(Ac) = \mathsf{bdd}(A)$$

- Good news: Full existence in arbitrary theories (Conant-H.).
- Bad news: Somewhat infinitary. Doesn't seem to mean much in arbitrary theories, but it does mean *something*:

Hyperimaginary: An equivalence class b_E of a type-definable equivalence relation E.

- Example: |x y| is infinitesimal' in RCF.
- Bounded closure: $b_E \in \mathsf{bdd}(A) \Leftrightarrow \mathsf{`Aut}(\mathbb{M}/A) \cdot b_E$ is small'
- Reasonable definition:

$$b \mathrel{igstyle h}_A^{\mathrm{b}} c \Leftrightarrow \mathsf{bdd}(Ab) \cap \mathsf{bdd}(Ac) = \mathsf{bdd}(A)$$

- Good news: Full existence in arbitrary theories (Conant-H.).
- Bad news: Somewhat infinitary. Doesn't seem to mean much in arbitrary theories, but it does mean *something*:

Theorem (essentially Adler?)

 $(T \text{ simple}) (b_i)_{i \in I}$ is a Morley sequence over A iff it is a total \bigcup^{b} -Morley sequence over A.

Hyperimaginary: An equivalence class b_E of a type-definable equivalence relation E.

- Example: |x y| is infinitesimal' in RCF.
- Bounded closure: $b_E \in bdd(A) \Leftrightarrow Aut(\mathbb{M}/A) \cdot b_E$ is small'
- Reasonable definition:

$$b \mathrel{igstyle h}_A^{\mathrm{b}} c \Leftrightarrow \mathsf{bdd}(Ab) \cap \mathsf{bdd}(Ac) = \mathsf{bdd}(A)$$

- Good news: Full existence in arbitrary theories (Conant-H.).
- Bad news: Somewhat infinitary. Doesn't seem to mean much in arbitrary theories, but it does mean *something*:

Theorem (essentially Adler?)

 $(T \text{ simple}) (b_i)_{i \in I}$ is a Morley sequence over A iff it is a total \bigcup^{b} -Morley sequence over A.

With elimination of hyperimaginaries we can replace \bigcup^{b} with \bigcup^{a} .

James Hanson

• Example: |x - y| is finite' in RCF.

- Example: |x y| is finite' in RCF.
- Bounded closure: $b_E \in \mathsf{bdd}^{\mathsf{u}}(A) \Leftrightarrow \operatorname{\mathsf{`Aut}}(\mathbb{M}/A) \cdot b_E$ is small'

- Example: '|x y| is finite' in RCF.
- Bounded closure: $b_E \in \mathsf{bdd}^{\mathsf{u}}(A) \Leftrightarrow \operatorname{`Aut}(\mathbb{M}/A) \cdot b_E$ is small'
- Reasonable(?) definition:

$$b \downarrow_A^{\mathsf{bu}} c \Leftrightarrow \mathsf{bdd}^\mathsf{u}(Ab) \cap \mathsf{bdd}^\mathsf{u}(Ac) = \mathsf{bdd}^\mathsf{u}(A)$$

- Example: |x y| is finite' in RCF.
- Bounded closure: $b_E \in \mathsf{bdd}^{\mathsf{u}}(A) \Leftrightarrow \operatorname{`Aut}(\mathbb{M}/A) \cdot b_E$ is small'
- Reasonable(?) definition:

$$b \downarrow_{A}^{\mathsf{bu}} c \Leftrightarrow \mathsf{bdd}^{\mathsf{u}}(Ab) \cap \mathsf{bdd}^{\mathsf{u}}(Ac) = \mathsf{bdd}^{\mathsf{u}}(A)$$

Bad news:

- Example: |x y| is finite' in RCF.
- Bounded closure: $b_E \in \mathsf{bdd}^{\mathsf{u}}(A) \Leftrightarrow \mathsf{`Aut}(\mathbb{M}/A) \cdot b_E$ is small'
- Reasonable(?) definition:

$$b \downarrow_A^{\mathsf{bu}} c \Leftrightarrow \mathsf{bdd}^\mathsf{u}(Ab) \cap \mathsf{bdd}^\mathsf{u}(Ac) = \mathsf{bdd}^\mathsf{u}(A)$$

Bad news: No compactness,

- Example: |x y| is finite' in RCF.
- Bounded closure: $b_E \in \mathsf{bdd}^{\mathsf{u}}(A) \Leftrightarrow \operatorname{`Aut}(\mathbb{M}/A) \cdot b_E$ is small'
- Reasonable(?) definition:

$$b \downarrow_A^{\mathsf{bu}} c \Leftrightarrow \mathsf{bdd}^\mathsf{u}(Ab) \cap \mathsf{bdd}^\mathsf{u}(Ac) = \mathsf{bdd}^\mathsf{u}(A)$$

Bad news: No compactness, highly infinitary,

- Example: |x y| is finite' in RCF.
- Bounded closure: $b_E \in \mathsf{bdd}^{\mathsf{u}}(A) \Leftrightarrow \operatorname{`Aut}(\mathbb{M}/A) \cdot b_E$ is small'
- Reasonable(?) definition:

$$b \downarrow_A^{\mathsf{bu}} c \Leftrightarrow \mathsf{bdd}^\mathsf{u}(Ab) \cap \mathsf{bdd}^\mathsf{u}(Ac) = \mathsf{bdd}^\mathsf{u}(A)$$

Bad news: No compactness, highly infinitary, generally sketchy, etc.

- Example: |x y| is finite' in RCF.
- Bounded closure: $b_E \in \mathsf{bdd}^{\mathsf{u}}(A) \Leftrightarrow \operatorname{`Aut}(\mathbb{M}/A) \cdot b_E$ is small'
- Reasonable(?) definition:

$$b \downarrow_A^{\mathsf{bu}} c \Leftrightarrow \mathsf{bdd}^\mathsf{u}(Ab) \cap \mathsf{bdd}^\mathsf{u}(Ac) = \mathsf{bdd}^\mathsf{u}(A)$$

Bad news: No compactness, highly infinitary, generally sketchy, etc.
 Good news: ^{bu} definitely means something.

What something does U^{bu} mean?

 $\operatorname{Autf}(\mathbb{M}/A)$ is the group generated by

$$\bigcup \{\operatorname{Aut}(\mathbb{M}/M) : A \subseteq M \models T\}.$$

 $\operatorname{Autf}(\mathbb{M}/A)$ is the group generated by

$$\int \{\operatorname{Aut}(\mathbb{M}/M) : A \subseteq M \models T\}.$$

 $b \equiv^{\mathsf{L}}_{\mathsf{A}} b' \text{ iff } b' \in \operatorname{Autf}(\mathbb{M}/\mathsf{A}) \cdot b.$

 $\operatorname{Autf}(\mathbb{M}/A)$ is the group generated by

$$\bigcup \{\operatorname{Aut}(\mathbb{M}/M) : A \subseteq M \models T\}.$$

 $b \equiv^{\mathsf{L}}_{\mathsf{A}} b' \text{ iff } b' \in \operatorname{Autf}(\mathbb{M}/\mathsf{A}) \cdot b.$

Theorem (essentially Wagner)

TFAE:

$$\bullet \bigcup_{A}^{\mathsf{bu}} c$$

 $\operatorname{Autf}(\mathbb{M}/A)$ is the group generated by

$$\bigcup \{\operatorname{Aut}(\mathbb{M}/M) : A \subseteq M \models T\}.$$

 $b \equiv^{\mathsf{L}}_{\mathcal{A}} b' \text{ iff } b' \in \operatorname{Autf}(\mathbb{M}/\mathcal{A}) \cdot b.$

Theorem (essentially Wagner)

TFAE:

$$\bullet \bigcup_{A}^{bu} c$$

• $\operatorname{Autf}(\mathbb{M}/A)$ is generated by $\operatorname{Autf}(\mathbb{M}/Ab) \cup \operatorname{Autf}(\mathbb{M}/Ac)$.

 $\operatorname{Autf}(\mathbb{M}/A)$ is the group generated by

$$\bigcup \{\operatorname{Aut}(\mathbb{M}/M) : A \subseteq M \models T\}.$$

 $b \equiv^{\mathsf{L}}_{\mathcal{A}} b' \text{ iff } b' \in \operatorname{Autf}(\mathbb{M}/\mathcal{A}) \cdot b.$

Theorem (essentially Wagner)

TFAE:

•
$$b
ightharpoonup^{\mathrm{bu}}_A c$$

- $\operatorname{Autf}(\mathbb{M}/A)$ is generated by $\operatorname{Autf}(\mathbb{M}/Ab) \cup \operatorname{Autf}(\mathbb{M}/Ac)$.
- (*Walking*) For any $b' \equiv^{\mathsf{L}}_{A} b$, we have the configuration

$$b_0 \equiv^{\mathsf{L}}_{Ac_1} b_2 \equiv^{\mathsf{L}}_{Ac_3} b_4 \equiv^{\mathsf{L}}_{Ac_5} \cdots b_{n-2} \equiv^{\mathsf{L}}_{Ac_{n-1}} b_n$$

$$c_1 \equiv^{\mathsf{L}}_{Ab_2} c_3 \equiv^{\mathsf{L}}_{Ab_4} c_5 \equiv^{\mathsf{L}}_{Ab_6} \cdots c_{n-1}$$

where $b_0 = b$, $c_1 = c$, and $b_n = b'$.

• $I \sim_A J$ if I + J is A-indiscernible.

- $I \sim_A J$ if I + J is A-indiscernible.
- \approx_A is the equivalence relation on infinite *A*-indiscernible sequences generated by \sim_A .

- $I \sim_A J$ if I + J is A-indiscernible.
- \approx_A is the equivalence relation on infinite *A*-indiscernible sequences generated by \sim_A .
- Shelah's definition in early simplicity theory: *I* is based on *A* if $I \equiv_A J \Leftrightarrow I \approx_A J$.

What are total U^{bu}-Morley sequences? II

Canonical witnessing configuration: $I \approx_A J$ if and only if we have

where $I_0 = I$, $J_n = J$, and $I_i + J_{i+1}$ and $I_{i+2} + J_{i+1}$ are A-indiscernible.

What are total \bigcup^{bu} -Morley sequences? II

Canonical witnessing configuration: $I \approx_A J$ if and only if we have

where $I_0 = I$, $J_n = J$, and $I_i + J_{i+1}$ and $I_{i+2} + J_{i+1}$ are A-indiscernible.

Theorem (H.)

 $(b_i)_{i < \omega}$ is a total \downarrow^{bu} -Morley sequence over A iff it is based on $bdd^u(A)$ (i.e. $I \equiv^L_A b_{<\omega} \Leftrightarrow I \approx_A b_{<\omega}$).

Note:
$$I \equiv_{bdd^{u}(A)} J$$
 iff $I \equiv^{L}_{A} J$.

The two questions

Theorem (H.) Yes.

James Hanson

Proof.

Horrible indiscernible tree combinatorics à la Kaplan-Ramsey.

Proof.

Horrible indiscernible tree combinatorics à la Kaplan-Ramsey.

There is a 'chain condition': If $(b_i)_{i < \omega}$ is a \bigcup_{a}^{bu} -Morley sequence over A that is Ac-indiscernible, then $c \bigcup_{a}^{bu} b_0$.

There is a 'chain condition': If $(b_i)_{i < \omega}$ is a \bigcup^{bu} -Morley sequence over A that is Ac-indiscernible, then $c \bigcup_{A}^{bu} b_0$.

Corollary (H.) $\downarrow^{d} \Rightarrow \downarrow^{bu}$

There is a 'chain condition': If $(b_i)_{i < \omega}$ is a \bigcup^{bu} -Morley sequence over A that is Ac-indiscernible, then $c \bigcup_{A}^{bu} b_0$.

Corollary (H.)

 ${\textstyle {\textstyle }}^{\scriptstyle \mathsf{d}} \Rightarrow {\textstyle {\textstyle }}^{\scriptstyle \mathsf{bu}}$

Proof.

Suppose
$$c
ightharpoonup^{\mathsf{d}}_{A} b$$
.

There is a 'chain condition': If $(b_i)_{i < \omega}$ is a \bigcup^{bu} -Morley sequence over A that is Ac-indiscernible, then $c \bigcup^{bu}_A b_0$.

Corollary (H.)

 ${\textstyle {\textstyle }}^{\scriptstyle \mathsf{d}} \Rightarrow {\textstyle {\textstyle }}^{\scriptstyle \mathsf{bu}}$

Proof.

Suppose $c
ightharpoonup^{d} b$. Find a $ightharpoonup^{bu}$ -Morley sequence $b_{<\omega}$ over A with $b_0 = b$.

There is a 'chain condition': If $(b_i)_{i < \omega}$ is a \bigcup^{bu} -Morley sequence over A that is Ac-indiscernible, then $c \bigcup^{bu}_A b_0$.

Corollary (H.)

 ${\textstyle {\textstyle \ }}^d \Rightarrow {\textstyle {\textstyle {\textstyle \ }}}^{bu}$

Proof.

Suppose $c extstyle _A^d b$. Find a $extstyle _b^{\text{bu}}$ -Morley sequence $b_{<\omega}$ over A with $b_0 = b$. Since $c extstyle _A^d b$, we may assume that $b_{<\omega}$ is Ac-indiscernible.

There is a 'chain condition': If $(b_i)_{i < \omega}$ is a \bigcup^{bu} -Morley sequence over A that is Ac-indiscernible, then $c \bigcup^{bu}_A b_0$.

Corollary (H.)

 ${\textstyle {\textstyle \ }}^d \Rightarrow {\textstyle {\textstyle {\textstyle \ }}}^{bu}$

Proof.

Suppose $c extstyle{}_{A}^{d} b$. Find a $extstyle{}_{b}^{bu}$ -Morley sequence $b_{<\omega}$ over A with $b_0 = b$. Since $c extstyle{}_{A}^{d} b$, we may assume that $b_{<\omega}$ is Ac-indiscernible. By the chain condition, $c extstyle{}_{A}^{bu} b$.

There is a 'chain condition': If $(b_i)_{i < \omega}$ is a \bigcup^{bu} -Morley sequence over A that is Ac-indiscernible, then $c \bigcup_{A}^{bu} b_0$.

Corollary (H.)

 ${\textstyle {\textstyle \ }}^d \Rightarrow {\textstyle {\textstyle {\textstyle \ }}}^{bu}$

Proof.

Suppose $c extstyle{bergen}^{d} b$. Find a $extstyle{burgen}^{burgen}$ -Morley sequence $b_{<\omega}$ over A with $b_0 = b$. Since $c extstyle{bergen}^{d} b$, we may assume that $b_{<\omega}$ is Ac-indiscernible. By the chain condition, $c extstyle{burgen}^{burgen} b$.

Corollary of Corollary

In a simple theory, $(b_i)_{i < \omega}$ is a Morley sequence over A if and only if it is a total \bigcup^{bu} -Morley sequence over A.

James Hanson

Bounded ultraimaginary independence

Mar. 26, 2023 12 / 19

In NSOP₁ theories

What about $NSOP_1$ theories?

What about NTP_1 theories?

What about NTP₁ theories?

Proposition (H.)

 $(T \text{ NTP}_1)$ If *I* is a tree Morley sequence over $M \models T$, then *I* is a total $\bigcup_{i=1}^{bu}$ -Morley sequence over *M*.

What about NTP₁ theories?

Proposition (H.)

 $(T \text{ NTP}_1)$ If *I* is a tree Morley sequence over $M \models T$, then *I* is a total \bigcup^{bu} -Morley sequence over *M*.

Proof.

Fix $J \equiv_M I$.

What about NTP₁ theories?

Proposition (H.)

 $(T \text{ NTP}_1)$ If *I* is a tree Morley sequence over $M \models T$, then *I* is a total \bigcup^{bu} -Morley sequence over *M*.

Proof.

Fix
$$J \equiv_M I$$
. Find $K \equiv_M I$ with $K \perp_M^K IJ$.

What about NTP₁ theories?

Proposition (H.)

 $(T \text{ NTP}_1)$ If *I* is a tree Morley sequence over $M \models T$, then *I* is a total \bigcup^{bu} -Morley sequence over *M*.

Proof.

Fix $J \equiv_M I$. Find $K \equiv_M I$ with $K \perp_M^K IJ$. By the independence theorem, we can find I^* and J^* such that $I + I^*$, $K + I^*$, $K + J^*$, and $J + J^*$ are all M-indiscernible, so $I \approx_M J$.

What about NTP₁ theories?

Proposition (H.)

 $(T \text{ NTP}_1)$ If *I* is a tree Morley sequence over $M \models T$, then *I* is a total \bigcup^{bu} -Morley sequence over *M*.

Proof.

Fix $J \equiv_M I$. Find $K \equiv_M I$ with $K \downarrow_M^K IJ$. By the independence theorem, we can find I^* and J^* such that $I + I^*$, $K + I^*$, $K + J^*$, and $J + J^*$ are all M-indiscernible, so $I \approx_M J$.

Converse?

What about NTP₁ theories?

Proposition (H.)

 $(T \text{ NTP}_1)$ If *I* is a tree Morley sequence over $M \models T$, then *I* is a total \bigcup^{bu} -Morley sequence over *M*.

Proof.

Fix $J \equiv_M I$. Find $K \equiv_M I$ with $K \perp_M^K IJ$. By the independence theorem, we can find I^* and J^* such that $I + I^*$, $K + I^*$, $K + J^*$, and $J + J^*$ are all M-indiscernible, so $I \approx_M J$.

Converse?

■ Odd observation: In stable theories, you get a '~_A-distance' of 2. In simple theories, you get 3. And in NTP₁ theories, you get 4.

Q2: Total \bigcup^{bu} -Morley sequences?

Given A and b, can we find a total \bigcup^{bu} -Morley sequence $(b_i)_{i < \omega}$ over A with $b_0 = b$?

Theorem (H.)

Yes, if we have an Erdős cardinal $\kappa > |Ab| + |T|$.

Theorem (H.)

Yes, if we have an Erdős cardinal $\kappa > |Ab| + |T|$.

Proof.

More horrible indiscernible tree combinatorics à la Kaplan-Ramsey but with some large cardinal infinitary Ramsey theory at the end.

Theorem (H.)

Yes, if we have an Erdős cardinal $\kappa > |Ab| + |T|$.

Proof.

More horrible indiscernible tree combinatorics à la Kaplan-Ramsey but with some large cardinal infinitary Ramsey theory at the end.

Does this actually need large cardinals?

Theorem (H.)

Yes, if we have an Erdős cardinal $\kappa > |Ab| + |T|$.

Proof.

More horrible indiscernible tree combinatorics à la Kaplan-Ramsey but with some large cardinal infinitary Ramsey theory at the end.

- Does this actually need large cardinals?
- Without any set theoretic hypotheses, we can get a sequence $(b_i)_{i < \omega}$ such that $b_{<i} \bigcup_{A}^{b_u} b_{\geq i}$ for each $i < \omega$.

Applications

Strong witnesses of Lascar strong type

Fix A and b and suppose there is a total $\bigcup_{i=1}^{bu}$ -Morley sequence $I \ni b$. For any b' with $b' \equiv^{L}_{A} b$, we have the configuration b J_1 b Jz I₄ J_{n-1} In h' with $I_0 = I$, $b' \in I_n$, and $I_i + J_{i+1}$ and $I_{i+2} + J_{i+1}$ A-indiscernible for all *i*.

Strong witnesses of Lascar strong type

Fix A and b and suppose there is a total $\bigcup_{i=1}^{bu}$ -Morley sequence $I \ni b$. For any b' with $b' \equiv^{L}_{A} b$, we have the configuration J_1 b Jz J_{n-1} h'

with $I_0 = I$, $b' \in I_n$, and $I_i + J_{i+1}$ and $I_{i+2} + J_{i+1}$ A-indiscernible for all *i*.

This is similar to a configuration in the proof of the independence theorem.

Variants of the independence theorem can generally be phrased like this:

Variants of the independence theorem can generally be phrased like this:

Theorems (Shelah, Hrushovski, Kim–Pillay, Ben Yaacov–Chernikov, Kaplan–Ramsey, Simon, Dobrowolski–Kim–Ramsey, etc.)

(*T* nice, maybe) Let $\Sigma(x)$ be an *A*-invariant partial type satisfying a chain condition. Assume that $c \models \Sigma \upharpoonright Aab$ and $b \equiv^{\mathsf{L}}_{A} b'$ and that *a*, *b*, and *b'* are sufficiently independent of one another. Then there exists a $c' \models \Sigma \upharpoonright Aab'$ such that $ac' \equiv_A ac$ and $b'c' \equiv_A bc$.

Variants of the independence theorem can generally be phrased like this:

Theorems (Shelah, Hrushovski, Kim–Pillay, Ben Yaacov–Chernikov, Kaplan–Ramsey, Simon, Dobrowolski–Kim–Ramsey, etc.)

(*T* nice, maybe) Let $\Sigma(x)$ be an *A*-invariant partial type satisfying a chain condition. Assume that $c \models \Sigma \upharpoonright Aab$ and $b \equiv_A^L b'$ and that *a*, *b*, and *b'* are sufficiently independent of one another. Then there exists a $c' \models \Sigma \upharpoonright Aab'$ such that $ac' \equiv_A ac$ and $b'c' \equiv_A bc$.

Variants of the independence theorem can generally be phrased like this:

Theorems (Shelah, Hrushovski, Kim–Pillay, Ben Yaacov–Chernikov, Kaplan–Ramsey, Simon, Dobrowolski–Kim–Ramsey, etc.)

(*T* nice, maybe) Let $\Sigma(x)$ be an *A*-invariant partial type satisfying a chain condition. Assume that $c \models \Sigma \upharpoonright Aab$ and $b \equiv_A^L b'$ and that *a*, *b*, and *b'* are sufficiently independent of one another. Then there exists a $c' \models \Sigma \upharpoonright Aab'$ such that $ac' \equiv_A ac$ and $b'c' \equiv_A bc$.

Variants of the independence theorem can generally be phrased like this:

Theorems (Shelah, Hrushovski, Kim–Pillay, Ben Yaacov–Chernikov, Kaplan–Ramsey, Simon, Dobrowolski–Kim–Ramsey, etc.)

(*T* nice, maybe) Let $\Sigma(x)$ be an *A*-invariant partial type satisfying a chain condition. Assume that $c \models \Sigma \upharpoonright Aab$ and $b \equiv_A^L b'$ and that *a*, *b*, and *b'* are sufficiently independent of one another. Then there exists a $c' \models \Sigma \upharpoonright Aab'$ such that $ac' \equiv_A ac$ and $b'c' \equiv_A bc$.

 $\Sigma(x)$ is often a *generically prime* filter: If $(b_i)_{i < \omega}$ is *A*-indiscernible and $\Sigma(x) \vdash \varphi(x, b_0) \lor \varphi(x, b_1)$, then $\Sigma(x) \vdash \varphi(x, b_0)$.

Can use total $_^{bu}$ -Morley sequences for notion of independence, but still need a strong chain condition, namely generic primality.

Can use total \bigcup^{bu} -Morley sequences for notion of independence, but still need a strong chain condition, namely generic primality.

Proposition (H.)

Let $\Sigma(x)$ be A-invariant and generically prime over A. For any a, I, I', and c, if

•
$$I \equiv_A^L I'$$
 are total \bigcup^{bu} -Morley sequences over A ,

•
$$c \models \Sigma \upharpoonright Aab$$
 for all $b \in I$, and

$$|I|, |I'| > 2^{|Aabc| + |T|},$$

then there are $b \in I$, $b' \in I'$, and $c' \models \Sigma \upharpoonright Aab'$ such that $ac' \equiv_A ac$ and $b'c' \equiv_A bc$.

Can use total \bigcup^{bu} -Morley sequences for notion of independence, but still need a strong chain condition, namely generic primality.

Proposition (H.)

Let $\Sigma(x)$ be A-invariant and generically prime over A. For any a, I, I', and c, if

•
$$I \equiv_A^L I'$$
 are total \bigcup^{bu} -Morley sequences over A ,

•
$$c \models \Sigma \upharpoonright Aab$$
 for all $b \in I$, and

$$||I|, |I'| > 2^{|Aabc|+|T|},$$

then there are $b \in I$, $b' \in I'$, and $c' \models \Sigma \upharpoonright Aab'$ such that $ac' \equiv_A ac$ and $b'c' \equiv_A bc$.

Can use total \bigcup^{bu} -Morley sequences for notion of independence, but still need a strong chain condition, namely generic primality.

Proposition (H.)

Let $\Sigma(x)$ be A-invariant and generically prime over A. For any a, I, I', and c, if

•
$$I \equiv_A^L I'$$
 are total \bigcup^{bu} -Morley sequences over A ,

•
$$c \models \Sigma \upharpoonright Aab$$
 for all $b \in I$, and

$$|I|, |I'| > 2^{|Aabc|+|T|},$$

then there are $b \in I$, $b' \in I'$, and $c' \models \Sigma \upharpoonright Aab'$ such that $ac' \equiv_A ac$ and $b'c' \equiv_A bc$.

Proposition (H.)

Let $\Sigma(x)$ be A-invariant and generically prime over A. For any $a, b \equiv_A^L b'$, and c, if

• $c \models \Sigma \upharpoonright Aab$ and

• there is a total \bigcup^{bu} -Morley sequence $I \ni b$ over A that is Aa-indiscernible,

then there are b'' and $c' \models \Sigma \upharpoonright Aab''$ such that $ac' \equiv_A ac$, $b''c' \equiv_A bc$, and $d_A^{\mathsf{L}}(b', b'') \leq 1$.

Proposition (H.)

Let $\Sigma(x)$ be A-invariant and generically prime over A. For any $a, b \equiv_A^L b'$, and c, if

• $c \models \Sigma \upharpoonright Aab$ and

• there is a total \bigcup^{bu} -Morley sequence $I \ni b$ over A that is Aa-indiscernible,

then there are b'' and $c' \models \Sigma \upharpoonright Aab''$ such that $ac' \equiv_A ac$, $b''c' \equiv_A bc$, and $d_A^{\mathsf{L}}(b', b'') \leq 1$.

$$a \xrightarrow{c} b \\ I \\ \vdots \\ i$$

Proposition (H.)

Let $\Sigma(x)$ be A-invariant and generically prime over A. For any $a, b \equiv_A^L b'$, and c, if

- $c \models \Sigma \upharpoonright Aab$ and
- there is a total \bigcup^{bu} -Morley sequence $I \ni b$ over A that is Aa-indiscernible,

then there are b'' and $c' \models \Sigma \upharpoonright Aab''$ such that $ac' \equiv_A ac$, $b''c' \equiv_A bc$, and $d_A^{\mathsf{L}}(b', b'') \leq 1$.

Proposition (H.)

Let $\Sigma(x)$ be A-invariant and generically prime over A. For any $a, b \equiv_A^L b'$, and c, if

- $c \models \Sigma \upharpoonright Aab$ and
- there is a total \bigcup^{bu} -Morley sequence $I \ni b$ over A that is A_a -indiscernible,

then there are b'' and $c' \models \Sigma \upharpoonright Aab''$ such that $ac' \equiv_A ac$, $b''c' \equiv_A bc$, and $d_A^{\mathsf{L}}(b', b'') \leq 1$.

Can we weaken the generic primality requirement?

Thank you