Skolemization in Continuous Logic

James Hanson

University of Wisconsin-Madison

November 12, 2019

UW Logic Seminar
Definition

A discrete theory T is **Skolemized** if for every formula $\varphi(\bar{x}, y)$ there is a definable function $f(\bar{x})$ such that $T \models \forall \bar{x}[\exists y \varphi(\bar{x}, y) \rightarrow \varphi(\bar{x}, f(\bar{x}))]$.
Definition

A discrete theory T is *Skolemized* if for every formula $\varphi(\bar{x}, y)$ there is a definable function $f(\bar{x})$ such that $T \models \forall \bar{x} \exists y \varphi(\bar{x}, y) \rightarrow \varphi(\bar{x}, f(\bar{x}))$.

Consider the following terrible proof that Skolemization is possible in discrete logic: Take a theory T with model M.
Brute Force Skolemization

Definition

A discrete theory T is Skolemized if for every formula $\varphi(\bar{x}, y)$ there is a definable function $f(\bar{x})$ such that $T \models \forall \bar{x} [\exists y \varphi(\bar{x}, y) \rightarrow \varphi(\bar{x}, f(\bar{x}))]$.

Consider the following terrible proof that Skolemization is possible in discrete logic: Take a theory T with model M.

- Step I: Pass to the complete expansion, $M^\#$ (i.e., add every subset of M^n for every $n < \omega$ as a predicate), and note that a complete expansion is always Skolemized.
Brute Force Skolemization

Definition

A discrete theory T is *Skolemized* if for every formula $\varphi(\bar{x}, y)$ there is a definable function $f(\bar{x})$ such that $T \models \forall \bar{x} [\exists y \varphi(\bar{x}, y) \rightarrow \varphi(\bar{x}, f(\bar{x}))]$.

Consider the following terrible proof that Skolemization is possible in discrete logic: Take a theory T with model M.

- **Step I:** Pass to the *complete expansion*, $M^\#$ (i.e., add every subset of M^n for every $n < \omega$ as a predicate), and note that a complete expansion is always Skolemized.

- **Step II:**
A discrete theory T is *Skolemized* if for every formula $\varphi(\bar{x}, y)$ there is a definable function $f(\bar{x})$ such that

$$T \models \forall \bar{x} \left[\exists y \varphi(\bar{x}, y) \rightarrow \varphi(\bar{x}, f(\bar{x})) \right].$$

Consider the following terrible proof that Skolemization is possible in discrete logic: Take a theory T with model M.

- **Step I**: Pass to the *complete expansion*, $M^\#$ (i.e., add every subset of M^n for every $n < \omega$ as a predicate), and note that a complete expansion is always Skolemized.

- **Step II**: Forcing and Shoenfield absoluteness.
Definition

A discrete theory T is *Skolemized* if for every formula $\varphi(\vec{x}, y)$ there is a definable function $f(\vec{x})$ such that $T \models \forall \vec{x} [\exists y \varphi(\vec{x}, y) \rightarrow \varphi(\vec{x}, f(\vec{x}))]$.

Consider the following terrible proof that Skolemization is possible in discrete logic: Take a theory T with model M.

- **Step I:** Pass to the *complete expansion*, $M^\#$ (i.e., add every subset of M^n for every $n < \omega$ as a predicate), and note that a complete expansion is always Skolemized.

- **Step II:** Forcing and Shoenfield absoluteness.
 Argue that if a theory T has an expansion $T' \supseteq T$ that is Skolemized, then there is an intermediate theory T'' with $T' \supseteq T'' \supseteq T$ such that T'' is already Skolemized and such that $|\mathcal{L}| = |\mathcal{L}''|$.
Metric signatures are defined exactly like discrete signatures with the following changes/additions:

- The symbol \(d \) instead of \(\leq \).
- To each predicate symbol \(P \) (including \(d \)), we assign a bound \(r_P > 0 \).
- To each predicate or function symbol \(s \) (other than \(d \)), we assign a modulus \(\omega_s : \mathbb{R}^+ \to \mathbb{R}^+ \), satisfying \(\omega_s(x) \to 0 \) as \(x \to 0 \).

Given a metric signature \(L \), an \(L \)-structure, \(M \), is a complete metric space \((M, d_M)\), of diameter \(\leq r_d \), with the following data:

- If \(P \) is an \(n \)-ary predicate symbol, then \(P^M : M^n \to [-r_P, r_P] \) which is \(\omega_P \)-uniformly continuous.
- If \(f \) is an \(n \)-ary function symbol, then \(f^M : M^n \to M \) which is \(\omega_f \)-uniformly continuous.
- If \(c \) is a constant symbol, then \(c^M \in M \).
Metric signatures are defined exactly like discrete signatures with the following changes/additions:

- The symbol d instead of $=$.
Metric signatures are defined exactly like discrete signatures with the following changes/additions:

- The symbol \(d \) instead of \(= \).
- To each predicate symbol \(P \) (including \(d \)), we assign a bound \(r_P > 0 \).
- To each predicate or function symbol \(s \) (other than \(d \)), we assign a modulus \(\omega_s : \mathbb{R}^+ \rightarrow \mathbb{R}^+ \), satisfying \(\omega_s(x) \rightarrow 0 \) as \(x \rightarrow 0 \).
Metric Structures

Metric signatures are defined exactly like discrete signatures with the following changes/additions:

- The symbol \(d \) instead of \(= \).
- To each predicate symbol \(P \) (including \(d \)), we assign a bound \(r_P > 0 \).
- To each predicate or function symbol \(s \) (other than \(d \)), we assign a modulus \(\omega_s : \mathbb{R}^+ \rightarrow \mathbb{R}^+ \), satisfying \(\omega_s(x) \rightarrow 0 \) as \(x \rightarrow 0 \).

Given a metric signature \(\mathcal{L} \), an *\(\mathcal{L} \)-structure*, \(M \), is a complete metric space \((M, d^M) \), of diameter \(\leq r_d \), with the following data:
Metric signatures are defined exactly like discrete signatures with the following changes/additions:

- The symbol d instead of $=.$
- To each predicate symbol P (including d), we assign a bound $r_P > 0.$
- To each predicate or function symbol s (other than d), we assign a modulus $\omega_s : \mathbb{R}^+ \to \mathbb{R}^+$, satisfying $\omega_s(x) \to 0$ as $x \to 0$.

Given a metric signature \mathcal{L}, an \mathcal{L}-structure, M, is a complete metric space (M, d^M), of diameter $\leq r_d$, with the following data:

- If P is an n-ary predicate symbol, then $P^M : M^n \to [-r_P, r_P]$ which is ω_P-uniformly continuous.
Metric signatures are defined exactly like discrete signatures with the following changes/additions:

- The symbol d instead of $=.$

- To each predicate symbol P (including d), we assign a bound $r_P > 0.$

- To each predicate or function symbol s (other than d), we assign a modulus $\omega_s : \mathbb{R}^+ \to \mathbb{R}^+$, satisfying $\omega_s(x) \to 0$ as $x \to 0.$

Given a metric signature $\mathcal{L},$ an \mathcal{L}-structure, $M,$ is a complete metric space $(M, d^M),$ of diameter $\leq r_d,$ with the following data:

- If P is an n-ary predicate symbol, then $P^M : M^n \to [-r_P, r_P]$ which is ω_P-uniformly continuous.

- If f is an n-ary function symbol, then $f^M : M^n \to M$ which is ω_f-uniformly continuous.
Metric Structures

Metric signatures are defined exactly like discrete signatures with the following changes/additions:

- The symbol d instead of $=.$
- To each predicate symbol P (including d), we assign a bound $r_P > 0.$
- To each predicate or function symbol s (other than d), we assign a modulus $\omega_s : \mathbb{R}^+ \to \mathbb{R}^+,$ satisfying $\omega_s(x) \to 0$ as $x \to 0.$

Given a metric signature $\mathcal{L},$ an \mathcal{L}-structure, $M,$ is a complete metric space $(M, d^M),$ of diameter $\leq r_d,$ with the following data:

- If P is an n-ary predicate symbol, then $P^M : M^n \to [-r_P, r_P]$ which is ω_P-uniformly continuous.
- If f is an n-ary function symbol, then $f^M : M^n \to M$ which is ω_f-uniformly continuous.
- If c is a constant symbol, then $c^M \in M.$
Terms are as in discrete logic. *Open and closed formulas*\(^1\) are defined inductively.

\(^1\)Apologies to anyone who learned logic from Shoenfield or Chang and Keisler.
Terms are as in discrete logic. *Open and closed formulas*¹ are defined inductively. Let $P\bar{t}$ and $Q\bar{s}$ be atomic formulas in the standard syntactic sense, and let $r \in \mathbb{R}$.

¹Apologies to anyone who learned logic from Shoenfield or Chang and Keisler.
Terms are as in discrete logic. *Open and closed formulas*\(^1\) are defined inductively. Let \(P\overline{t} \) and \(Q\overline{s} \) be atomic formulas in the standard syntactic sense, and let \(r \in \mathbb{R} \).

- \(P\overline{t} \square r \) and \(P\overline{t} \square Q\overline{s} \) are open formulas for \(\square \in \{<, >, \neq \} \) and are closed formulas for \(\square \in \{\leq, \geq, =\} \).

\(^1\)Apologies to anyone who learned logic from Shoenfield or Chang and Keisler.
Terms are as in discrete logic. *Open and closed formulas*⁠¹ are defined inductively. Let \(P \overline{t} \) and \(Q \overline{s} \) be atomic formulas in the standard syntactic sense, and let \(r \in \mathbb{R} \).

- \(P \overline{t} \sqcap r \) and \(P \overline{t} \sqcap Q \overline{s} \) are open formulas for \(\sqcap \in \{ <, >, \neq \} \) and are closed formulas for \(\sqcap \in \{ \leq, \geq, = \} \).

Let \(\varphi \)'s be open formulas and \(\chi \)'s be closed formulas.

- \(\chi \rightarrow \varphi, \neg \chi, \varphi \land \varphi', \varphi \lor \varphi', \) and \(\bigvee_{i<\omega} \varphi_i \) are open formulas.
- \(\varphi \rightarrow \chi, \neg \varphi, \chi \land \chi', \chi \lor \chi', \) and \(\bigwedge_{i<\omega} \chi_i \) are closed formulas.

²Apologies to anyone who learned logic from Shoenfield or Chang and Keisler.
Terms are as in discrete logic. *Open and closed formulas*\(^1\) are defined inductively. Let \(P \bar{t}\) and \(Q \bar{s}\) be atomic formulas in the standard syntactic sense, and let \(r \in \mathbb{R}\).

- \(P \bar{t} \mathord{\square} r\) and \(P \bar{t} \mathord{\square} Q \bar{s}\) are open formulas for \(\mathord{\square} \in \{<, >, \neq\}\) and are closed formulas for \(\mathord{\square} \in \{\leq, \geq, =\}\).

Let \(\varphi\)'s be open formulas and \(\chi\)'s be closed formulas.

- \(\chi \to \varphi\), \(\neg \chi\), \(\varphi \land \varphi'\), \(\varphi \lor \varphi'\), and \(\bigvee_{i<\omega} \varphi_i\) are open formulas.
- \(\varphi \to \chi\), \(\neg \varphi\), \(\chi \land \chi'\), \(\chi \lor \chi'\), and \(\bigwedge_{i<\omega} \chi_i\) are closed formulas.
- \(\exists v \varphi\) and \(\forall v \varphi\) are open formulas.
- \(\exists v \chi\) and \(\forall v \chi\) are closed formulas.

\(^1\)Apologies to anyone who learned logic from Shoenfield or Chang and Keisler.
Terms are as in discrete logic. *Open and closed formulas*\(^1\) are defined inductively. Let \(P\bar{t}\) and \(Q\bar{s}\) be atomic formulas in the standard syntactic sense, and let \(r \in \mathbb{R}\).

- \(P\bar{t} \Box r\) and \(P\bar{t} \Box Q\bar{s}\) are open formulas for \(\Box \in \{<, >, \neq\}\) and are closed formulas for \(\Box \in \{\leq, \geq, =\}\).

Let \(\varphi\)'s be open formulas and \(\chi\)'s be closed formulas.

- \(\chi \rightarrow \varphi, \neg \chi, \varphi \land \varphi', \varphi \lor \varphi', \text{ and } \bigvee_{i<\omega} \varphi_i\) are open formulas.
- \(\varphi \rightarrow \chi, \neg \varphi, \chi \land \chi', \chi \lor \chi', \text{ and } \bigwedge_{i<\omega} \chi_i\) are closed formulas.
- \(\exists v \varphi\) and \(\forall v \varphi\) are open formulas.
- \(\exists v \chi\) and \(\forall v \chi\) are closed formulas.

The semantic interpretation of any standard logical symbol is standard.

\(^1\)Apologies to anyone who learned logic from Shoenfield or Chang and Keisler.
The only non-standard symbols are *strong universal quantification*, $\forall x \varphi$, and *weak existential quantification*, $\exists x \chi$:
The only non-standard symbols are \textit{strong universal quantification}, $\forall x \varphi$, and \textit{weak existential quantification}, $\exists x \chi$:

- $M \models \forall x \varphi(\bar{a}, x)$ if for all $b \in N \geq M$, $N \models \varphi(\bar{a}, b)$.

Examples:

- $\forall y (d_{xy} < \varepsilon \rightarrow d_{xy} = 0)$, x is isolated within distance ε.

- $\exists xyz \forall \forall w (\chi(w) \rightarrow d_{xw} < \delta \lor d_{yw} < \delta \lor d_{zw} < \delta)$, χ can be covered by 3 open balls of radius δ (in every model).

- $\forall x \exists y (Dy = 0 \land d_{xy} = Dx)$, D is the distance predicate of a set.

- $\forall x \exists y [F_{xy} = 0 \land \forall z (d_{yz} = F_{xz})]$, F defines a function.
Semantics

The only non-standard symbols are strong universal quantification, $\forall x \varphi$, and weak existential quantification, $\exists x \chi$:

- $M \models \forall x \varphi(\bar{a}, x)$ if for all $b \in N \succeq M$, $N \models \varphi(\bar{a}, b)$.
- $M \models \exists x \chi(\bar{a}, x)$ if there exists $b \in N \succeq M$, $N \models \chi(\bar{a}, b)$.

Examples:

- $\forall y (d_{xy} < \epsilon \rightarrow d_{xy} = 0)$, x is isolated within distance ϵ.
- $\exists xyz \forall \forall w (\chi(w) \rightarrow d_{xw} < \delta \lor d_{yw} < \delta \lor d_{zw} < \delta)$, χ can be covered by 3 open balls of radius δ (in every model).
- $\forall x \exists y (D_{y} = 0 \land d_{xy} = D_{x})$, D is the distance predicate of a set.
- $\forall x \exists y [F_{xy} = 0 \land \forall z (d_{yz} = Fxz)]$, F defines a function.

$\forall i < \omega (\varphi_i(x, \bar{z}) \rightarrow \chi_i(y, \bar{z}))$, x and y satisfy the same formulas over \bar{z}, where (φ_i, χ_i) is a 'dense' sequence of formulas satisfying $\varphi_i(w, \bar{z}) \models \chi_i(w, \bar{z})$ (in every countable L).
Semantics

The only non-standard symbols are *strong universal quantification*, $\forall x \varphi$, and *weak existential quantification*, $\exists x \chi$:

- $M \models \forall x \varphi(\bar{a}, x)$ if for all $b \in N \succeq M$, $N \models \varphi(\bar{a}, b)$.
- $M \models \exists x \chi(\bar{a}, x)$ if there exists $b \in N \succeq M$, $N \models \chi(\bar{a}, b)$.

Examples:
The only non-standard symbols are strong universal quantification, $\forall x \varphi$, and weak existential quantification, $\exists x \chi$:

- $M \models \forall x \varphi(\bar{a}, x)$ if for all $b \in N \succeq M$, $N \models \varphi(\bar{a}, b)$.
- $M \models \exists x \chi(\bar{a}, x)$ if there exists $b \in N \succeq M$, $N \models \chi(\bar{a}, b)$.

Examples:

- $\forall y (dxy < \varepsilon \rightarrow dxy = 0)$, x is isolated within distance ε.
Semantics

The only non-standard symbols are strong universal quantification, $\forall x \varphi$, and weak existential quantification, $\exists x \chi$:

- $M \models \forall x \varphi(\bar{a}, x)$ if for all $b \in N \succeq M$, $N \models \varphi(\bar{a}, b)$.
- $M \models \exists x \chi(\bar{a}, x)$ if there exists $b \in N \succeq M$, $N \models \chi(\bar{a}, b)$.

Examples:

- $\forall y (dxy < \varepsilon \rightarrow dxy = 0)$, x is isolated within distance ε.
- $\exists xyz \forall w (\chi(w) \rightarrow dxw < \delta \lor dyw < \delta \lor dzw < \delta)$, χ can be covered by 3 open balls of radius δ (in every model).
Semantics

The only non-standard symbols are strong universal quantification, \(\forall x \varphi \), and weak existential quantification, \(\exists x \chi \):

- \(M \models \forall x \varphi(\bar{a}, x) \) if for all \(b \in N \succeq M \), \(N \models \varphi(\bar{a}, b) \).
- \(M \models \exists x \chi(\bar{a}, x) \) if there exists \(b \in N \succeq M \), \(N \models \chi(\bar{a}, b) \).

Examples:

- \(\forall y (dxy < \varepsilon \rightarrow dxy = 0) \), \(x \) is isolated within distance \(\varepsilon \).
- \(\exists xyz \forall w (\chi(w) \rightarrow dxw < \delta \lor dyw < \delta \lor dzw < \delta) \), \(\chi \) can be covered by 3 open balls of radius \(\delta \) (in every model).
- \(\forall x \exists y (Dy = 0 \land dxy = Dx) \), \(D \) is the distance predicate of a set.
The only non-standard symbols are strong universal quantification, $\forall x \varphi$, and weak existential quantification, $\exists x \chi$:

- $M \models \forall x \varphi(\bar{a}, x)$ if for all $b \in N \succeq M$, $N \models \varphi(\bar{a}, b)$.
- $M \models \exists x \chi(\bar{a}, x)$ if there exists $b \in N \succeq M$, $N \models \chi(\bar{a}, b)$.

Examples:

- $\forall y (dxy < \varepsilon \rightarrow dxy = 0)$, x is isolated within distance ε.
- $\exists xyz \forall w (\chi(w) \rightarrow dwx < \delta \lor dyw < \delta \lor dzw < \delta)$, χ can be covered by 3 open balls of radius δ (in every model).
- $\forall x \exists y (Dy = 0 \land dxy = Dx)$, D is the distance predicate of a set.
- $\forall x \exists y [Fxy = 0 \land \forall z (dyz = Fxz)]$, F defines a function.
The only non-standard symbols are strong universal quantification, $\forall x \varphi$, and weak existential quantification, $\exists x \chi$:

- $M \models \forall x \varphi(\bar{a}, x)$ if for all $b \in N \succeq M$, $N \models \varphi(\bar{a}, b)$.
- $M \models \exists x \chi(\bar{a}, x)$ if there exists $b \in N \succeq M$, $N \models \chi(\bar{a}, b)$.

Examples:

- $\forall y (dxy < \varepsilon \rightarrow dxy = 0)$, x is isolated within distance ε.
- $\exists xyz \forall w (\chi(w) \rightarrow dxw < \delta \lor dyw < \delta \lor dzw < \delta)$, χ can be covered by 3 open balls of radius δ (in every model).
- $\forall x \exists y (Dy = 0 \land dxy = Dx)$, D is the distance predicate of a set.
- $\forall x \exists y [Fxy = 0 \land \forall z (dyz = Fxz)]$, F defines a function.
- $\bigwedge_{i<\omega} (\varphi_i(x, \bar{z}) \rightarrow \chi_i(y, \bar{z}))$, x and y satisfy the same formulas over \bar{z}, where (φ_i, χ_i) is a ‘dense’ sequence of formulas satisfying $\varphi_i(w, \bar{z}) \models \chi_i(w, \bar{z})$. ($\mathcal{L}$ countable.)
Given a set of closed sentences T and a tuple of variables \bar{x}, the type space $S_{\bar{x}}(T)$ is the collection of all maximal finitely satisfiable (which, by compactness, are satisfiable) sets $p(\bar{x}) \supseteq T$ of closed formulas with free variables among \bar{x}.
Given a set of closed sentences T and a tuple of variables \bar{x}, the type space $S_{\bar{x}}(T)$ is the collection of all maximal finitely satisfiable (which, by compactness, are satisfiable) sets $p(\bar{x}) \supseteq T$ of closed formulas with free variables among \bar{x}.

- For each closed formula χ, let $[\chi] = \{p \in S_{\bar{x}}(T) : \chi \in p\}$.
- For each open formula φ, let $[\varphi] = \{p \in S_{\bar{x}}(T) : \neg \varphi \notin p\}$.

The sets $[\varphi]$ form a base of a compact Hausdorff topology on $S_{\bar{x}}(T)$, even if we restrict to finitary formulas with rational bounds. For any open set $U \subseteq S_{\bar{x}}(T)$, there is an open formula φ such that $U = [\varphi]$ iff U is an F_σ set (i.e., a Σ^0_2 set). Likewise $[\chi]$ are precisely the zerosets (i.e., the closed G_δ / Π^0_2 sets).

If L is countable, these exhaust the open and closed sets, respectively.
Given a set of closed sentences T and a tuple of variables \bar{x}, the type space $S_{\bar{x}}(T)$ is the collection of all maximal finitely satisfiable (which, by compactness, are satisfiable) sets $p(\bar{x}) \supseteq T$ of closed formulas with free variables among \bar{x}.

- For each closed formula χ, let $[\chi] = \{ p \in S_{\bar{x}}(T) : \chi \in p \}$.
- For each open formula φ, let $[\varphi] = \{ p \in S_{\bar{x}}(T) : \neg \varphi \notin p \}$.

The sets $[\varphi]$ form a base of a compact Hausdorff topology on $S_{\bar{x}}(T)$, even if we restrict to finitary formulas with rational bounds.
Given a set of closed sentences \(T \) and a tuple of variables \(\bar{x} \), the type space \(S_{\bar{x}}(T) \) is the collection of all maximal finitely satisfiable (which, by compactness, are satisfiable) sets \(p(\bar{x}) \supseteq T \) of closed formulas with free variables among \(\bar{x} \).

- For each closed formula \(\chi \), let \([\chi] = \{ p \in S_{\bar{x}}(T) : \chi \in p \} \).
- For each open formula \(\varphi \), let \([\varphi] = \{ p \in S_{\bar{x}}(T) : \neg \varphi \notin p \} \).

The sets \([\varphi] \) form a base of a compact Hausdorff topology on \(S_{\bar{x}}(T) \), even if we restrict to finitary formulas with rational bounds.

- For any open set \(U \subseteq S_{\bar{x}}(T) \), there is an open formula \(\varphi \) such that \(U = [\varphi] \) iff \(U \) is an \(F_\sigma \) set (i.e., a \(\Sigma^0_2 \) set).
Type Space

Given a set of closed sentences T and a tuple of variables \bar{x}, the type space $S_{\bar{x}}(T)$ is the collection of all maximal finitely satisfiable (which, by compactness, are satisfiable) sets $p(\bar{x}) \supseteq T$ of closed formulas with free variables among \bar{x}.

- For each closed formula χ, let $[\chi] = \{ p \in S_{\bar{x}}(T) : \chi \in p \}$.
- For each open formula φ, let $[\varphi] = \{ p \in S_{\bar{x}}(T) : \neg \varphi \notin p \}$.

The sets $[\varphi]$ form a base of a compact Hausdorff topology on $S_{\bar{x}}(T)$, even if we restrict to finitary formulas with rational bounds.

- For any open set $U \subseteq S_{\bar{x}}(T)$, there is an open formula φ such that $U = [\varphi]$ iff U is an F_σ set (i.e., a Σ^0_2 set).
- Likewise $[\chi]$ are precisely the zero sets (i.e., the closed G_δ / Π^0_2 sets).
Given a set of closed sentences T and a tuple of variables \bar{x}, the type space $S_{\bar{x}}(T)$ is the collection of all maximal finitely satisfiable (which, by compactness, are satisfiable) sets $p(\bar{x}) \supseteq T$ of closed formulas with free variables among \bar{x}.

- For each closed formula χ, let $[\chi] = \{ p \in S_{\bar{x}}(T) : \chi \in p \}$.
- For each open formula φ, let $[\varphi] = \{ p \in S_{\bar{x}}(T) : \neg \varphi \notin p \}$.

The sets $[\varphi]$ form a base of a compact Hausdorff topology on $S_{\bar{x}}(T)$, even if we restrict to finitary formulas with rational bounds.

- For any open set $U \subseteq S_{\bar{x}}(T)$, there is an open formula φ such that $U = [\varphi]$ iff U is an F_σ set (i.e., a Σ^0_2 set).
- Likewise $[\chi]$ are precisely the zero sets (i.e., the closed G_δ / Π^0_2 sets).

If \mathcal{L} is countable, these exhaust the open and closed sets, respectively.
Definition

Let X be a topological spaces. An \textit{(}X-valued) formulas \textit{(on \bar{x})} is a continuous function $f : S_{\bar{x}}(T) \rightarrow X$.
Let X be a topological spaces. An $(X$-valued) formulas (on \bar{x}) is a continuous function $f : S_{\bar{x}}(T) \to X$.

- Formulas in discrete logic are equivalent to $\{0, 1\}$-valued formulas.
Definition

Let X be a topological spaces. An \textit{$(X$-valued) formulas (on \bar{x})} is a continuous function $f : S_{\bar{x}}(T) \rightarrow X$.

- Formulas in discrete logic are equivalent to $\{0, 1\}$-valued formulas.
- If you squint, open and closed formulas are equivalent to S-valued formulas, where S is the Sierpiński space.
Definition

Let X be a topological spaces. An *(X-valued) formulas (on \bar{x})* is a continuous function $f : S_{\bar{x}}(T) \rightarrow X$.

- Formulas in discrete logic are equivalent to $\{0, 1\}$-valued formulas.
- If you squint, open and closed formulas are equivalent to S-valued formulas, where S is the Sierpiński space.
- \mathbb{R}-valued formulas are equivalent to the typical notion of formula in continuous logic.
General Formulas

Definition

Let X be a topological spaces. An \textit{(X-valued) formulas (on \bar{x})} is a continuous function $f : S_{\bar{x}}(T) \to X$.

- Formulas in discrete logic are equivalent to $\{0, 1\}$-valued formulas.
- If you squint, open and closed formulas are equivalent to S-valued formulas, where S is the Sierpiński space.
- \mathbb{R}-valued formulas are equivalent to the typical notion of formula in continuous logic.
- If F and G are \mathbb{R}-valued formulas, then expressions like $F\bar{x} < r$ and $F\bar{x} + G\bar{y} = G\bar{z}$ have interpretations as open or closed formulas. We will write these freely.
Adding a discrete metric and Skolemizing naively works for some applications (Ehrenfeucht-Mostowski models).
Adding a discrete metric and Skolemizing naïvely works for some applications (Ehrenfeucht-Mostowski models).

It’s far too much to ask for while preserving the metric:
Adding a discrete metric and Skolemizing naïvely works for some applications (Ehrenfeucht-Mostowski models).

It’s far too much to ask for while preserving the metric: Let M be a structure whose universe is $[0,1]$ with the standard metric and with a unary predicate I such that $I^M(x) = x$. There is a formula $\phi(x,y)$ that looks like this:

$$\phi(x,0) \quad \phi(1,y) \quad \forall x \exists y \phi(x,y),$$

but there is no continuous function $f : [0,1] \to [0,1]$ such that $M \models \phi(x,f(x))$ for every x.
Adding a discrete metric and Skolemizing naïvely works for some applications (Ehrenfeucht-Mostowski models).

It’s far too much to ask for while preserving the metric: Let M be a structure whose universe is $[0, 1]$ with the standard metric and with a unary predicate I such that $I^M(x) = x$.

There is a formula $\varphi(x, y)$ that looks like this:
Adding a discrete metric and Skolemizing naively works for some applications (Ehrenfeucht-Mostowski models).

It's far too much to ask for while preserving the metric: Let M be a structure whose universe is $[0, 1]$ with the standard metric and with a unary predicate I such that $I^M(x) = x$.

There is a formula $\varphi(x, y)$ that looks like this: $\forall x \exists y \varphi(x, y)$, but there is no continuous function $f : [0, 1] \to [0, 1]$ such that $M \models \varphi(x, f(x))$ for every x.
Weak Skolemization

If T is a Skolemized theory then for any set of parameters A, $\text{dcl} \ A$ is a model of T.
Weak Skolemization

If T is a Skolemized theory then for any set of parameters A, $dcl A$ is a model of T. In discrete logic this is equivalent to being Skolemized:

Definition
Fix a complete theory T. Let $M|\models T$ and $A \subseteq M$. The definable closure of A, $dcl A$, is the set of all $b \in M$ such that for some $a \in A$ and some R-valued formula F, we have $M|\models \forall x (dxb = F \bar{a}x)$.

Definition (H.)
A theory T is weakly Skolemized if for any $A \subseteq M|\models T$, $dcl A \preceq M$.

There are theories that are weakly Skolemized but not Skolemized.
Weak Skolemization

If T is a Skolemized theory then for any set of parameters A, $\text{dcl} \ A$ is a model of T. In discrete logic this is equivalent to being Skolemized:

- For any formula $\varphi(x, y)$, for every type $p \in S_1(T)$, let $a \models p$. If $\exists y \varphi(a, y)$, then since $\text{dcl}\{a\} \models T$ there must be a $b \in \text{dcl}\{a\}$ such that $\varphi(a, b)$. Some formula $\psi(a, y)$ witnesses that $b \in \text{dcl}\{a\}$. By compactness there’s a finite list of these formulas that work for any type p and we can patch these together to form a Skolem function.
Weak Skolemization

If T is a Skolemized theory then for any set of parameters A, $\text{dcl} A$ is a model of T. In discrete logic this is equivalent to being Skolemized:

For any formula $\varphi(x, y)$, for every type $p \in S_1(T)$, let $a \models p$. If $\exists y \varphi(a, y)$, then since $\text{dcl}\{a\} \models T$ there must be a $b \in \text{dcl}\{a\}$ such that $\varphi(a, b)$. Some formula $\psi(a, y)$ witnesses that $b \in \text{dcl}\{a\}$. By compactness there’s a finite list of these formulas that work for any type p and we can patch these together to form a Skolem function.

Definition

Fix a complete theory T. Let $M \models T$ and $A \subseteq M$. The *definable closure* of A, $\text{dcl} A$, is the set of all $b \in M$ such that for some $\bar{a} \in A$ and some \mathbb{R}-valued formula F, we have $M \models \forall x (dxb = F\bar{a}x)$.
Weak Skolemization

If T is a Skolemized theory then for any set of parameters A, dcl A is a model of T. In discrete logic this is equivalent to being Skolemized:

- For any formula $\varphi(x,y)$, for every type $p \in S_1(T)$, let $a \models p$. If $\exists y \varphi(a,y)$, then since dcl{a} $\models T$ there must be a $b \in$ dcl{a} such that $\varphi(a,b)$. Some formula $\psi(a,y)$ witnesses that $b \in$ dcl{a}. By compactness there’s a finite list of these formulas that work for any type p and we can patch these together to form a Skolem function.

Definition

Fix a complete theory T. Let $M \models T$ and $A \subseteq M$. The *definable closure* of A, dcl A, is the set of all $b \in M$ such that for some $\bar{a} \in A$ and some \mathbb{R}-valued formula F, we have $M \models \forall x (dxb = F\bar{a}x)$.

Definition (H.)

A theory T is *weakly Skolemized* if for any $A \subseteq M \models T$, dcl $A \preceq M$.

James Hanson (UW Madison)

Skolemization in Continuous Logic

November 12, 2019
Weak Skolemization

If T is a Skolemized theory then for any set of parameters A, $\text{dcl} A$ is a model of T. In discrete logic this is equivalent to being Skolemized:

- For any formula $\varphi(x, y)$, for every type $p \in S_1(T)$, let $a \models p$. If $\exists y \varphi(a, y)$, then since $\text{dcl}\{a\} \models T$ there must be a $b \in \text{dcl}\{a\}$ such that $\varphi(a, b)$. Some formula $\psi(a, y)$ witnesses that $b \in \text{dcl}\{a\}$. By compactness there’s a finite list of these formulas that work for any type p and we can patch these together to form a Skolem function.

Definition

Fix a complete theory T. Let $M \models T$ and $A \subseteq M$. The definable closure of A, $\text{dcl} A$, is the set of all $b \in M$ such that for some $\bar{a} \in A$ and some \mathbb{R}-valued formula F, we have $M \models \forall x (dx b = F\bar{a}x)$.

Definition (H.)

A theory T is weakly Skolemized if for any $A \subseteq M \models T$, $\text{dcl} A \preceq M$.

There are theories that are weakly Skolemized but not Skolemized.
What does weak Skolemization mean?

Assume T is weakly Skolemized. Pick an open formula $\varphi(\bar{x}, y)$.
What does weak Skolemization mean?

Assume T is weakly Skolemized. Pick an open formula $\varphi(\bar{x}, y)$.

- By weak Skolemization, for any \bar{a}, if $\exists y \varphi(\bar{a}, y)$, then there is an \mathbb{R}-valued formula $F(\bar{x}, y)$ such that $F(\bar{a}, y)$ is the distance predicate of a singleton $\{b\}$ satisfying $\varphi(\bar{a}, b)$.
What does weak Skolemization mean?

Assume T is weakly Skolemized. Pick an open formula $\varphi(\bar{x}, y)$.

- By weak Skolemization, for any \bar{a}, if $\exists y \varphi(\bar{a}, y)$, then there is an \mathbb{R}-valued formula $F(\bar{x}, y)$ such that $F(\bar{a}, y)$ is the distance predicate of a singleton $\{b\}$ satisfying $\varphi(\bar{a}, b)$.

- This is a property of $tp(\bar{a})$, but once again different types may require different formulas.
Assume T is weakly Skolemized. Pick an open formula $\varphi(\bar{x}, y)$.

- By weak Skolemization, for any \bar{a}, if $\exists y \varphi(\bar{a}, y)$, then there is an \mathbb{R}-valued formula $F(\bar{x}, y)$ such that $F(\bar{a}, y)$ is the distance predicate of a singleton $\{b\}$ satisfying $\varphi(\bar{a}, b)$.

- This is a property of $tp(\bar{a})$, but once again different types may require different formulas.

- For each \mathbb{R}-valued formula F, the set of parameters for which it is the distance predicate of a singleton is given by the closed formula $\exists z [F\bar{x}z = 0 \land \forall y (dyz = F\bar{xy})]$.
What does weak Skolemization mean?

Assume T is weakly Skolemized. Pick an open formula $\varphi(\bar{x}, y)$.

- By weak Skolemization, for any \bar{a}, if $\exists y \varphi(\bar{a}, y)$, then there is an \mathbb{R}-valued formula $F(\bar{x}, y)$ such that $F(\bar{a}, y)$ is the distance predicate of a singleton $\{b\}$ satisfying $\varphi(\bar{a}, b)$.

- This is a property of $tp(\bar{a})$, but once again different types may require different formulas.

- For each \mathbb{R}-valued formula F, the set of parameters for which it is the distance predicate of a singleton is given by the closed formula
 \[\exists z [F\bar{x}z = 0 \land \forall y (dyz = F\bar{xy})]. \]

- Therefore we have a covering of a compact Hausdorff space, $S_{\bar{x}}(T)$, by zero sets (i.e., closed G_δ / Π^0_2 sets), specifically $[\neg \exists y \varphi(\bar{x}, y)]$ and the domains of definable partial Skolem functions for φ.

When can we find a small subcover?

Question

Does there exist a κ such that:

(*) for any compact Hausdorff space X and any cover $\{F_i\}_{i \in I}$ of X by closed G_δ sets there is a subcover $J \subseteq I$ such that $|J| \leq \kappa$?
Question

Does there exist a κ such that:

(*) for any compact Hausdorff space X and any cover $\{F_i\}_{i \in I}$ of X by closed G_δ sets there is a subcover $J \subseteq I$ such that $|J| \leq \kappa$?

Theorem (Usuba)

A cardinal κ has property (*) if and only if it is the first ω_1-strongly compact cardinal. In particular, it is consistent that no such κ exists.
ω_1-Strongly Compact Cardinals
We don't actually need large cardinals.
We don’t actually need large cardinals.
Step II: Bringing the Cardinality Down
The Structure of Weakly Skolemized Theories
Let $F \bar{x} y$ be an \mathbb{R}-valued formula such that for some parameters \bar{a}, $F \bar{a} y$ is the distance predicate of a singleton.
Let $F\bar{x}y$ be an \mathbb{R}-valued formula such that for some parameters \bar{a}, $F\bar{a}y$ is the distance predicate of a singleton.

Consider the formula

$$\alpha_{F,\varepsilon}(\bar{x}) \equiv \exists y \left[F\bar{x}y < \frac{\varepsilon}{2} \land \forall z \left(|dyz - F\bar{x}z| < \frac{\varepsilon}{2} \right) \right].$$
Let $F\bar{x}y$ be an \mathbb{R}-valued formula such that for some parameters \bar{a}, $F\bar{a}y$ is the distance predicate of a singleton.

Consider the formula

$$\alpha_{F,\varepsilon}(\bar{x}) \equiv \exists y \left[F\bar{x}y < \frac{\varepsilon}{2} \land \forall z \left(|dyz - F\bar{x}z| < \frac{\varepsilon}{2} \right) \right].$$

We have that $\alpha_{F,\varepsilon}(\bar{a})$, and while $\alpha_{F,\varepsilon}(\bar{e})$ may not guarantee that $F\bar{e}y$ is the distance predicate of a singleton, it does give that it \textit{approximately} selects out a unique element to within a distance of ε.

\hspace{5cm}
Almost Functions

Let Y be a set. An almost function, f, on Y is a partial function on $X \times Y$ for some set X such that for every $y \in Y$ there is an $x \in X$ such that $f(x, y)$ is defined.
Almost Functions

Let Y be a set. An *almost function*, f, on Y is a partial function on $X \times Y$ for some set X such that for every $y \in Y$ there is an $x \in X$ such that $f(x, y)$ is defined.

Definition

An X-indexed continuous family of \mathbb{R}-valued formulas $F : X \times S_{\bar{y}z}(T) \rightarrow \mathbb{R}$ *defines a definable almost function* if for any \bar{a} there is $t \in X$ such that $F_t\bar{a}z$ is the distance predicate of a singleton.
We want to show that weak Skolemization is witnessed by almost functions. We’ll need this:

Lemma

If T is weakly Skolemized, then for any $\varepsilon > 0$ and any $\varphi(\bar{x}, y)$ and $\chi(\bar{x})$, open and closed formulas, such that $\forall \bar{x}(\chi(\bar{x}) \rightarrow \exists y \varphi(\bar{x}, y))$, there is a finite sequence of \mathbb{R}-valued formulas F_0, \ldots, F_n and real numbers $\delta_0, \ldots, \delta_n < \varepsilon$ such that for any \bar{a}, if $\chi(\bar{a})$, then there is an $i \leq n$ such that $\alpha_{F_i, \delta_i}(\bar{a})$ and $\forall y(F_i \bar{a}y \leq \delta_i \rightarrow \varphi(\bar{a}, y))$.
Building Almost Skolem Functions: The Lemma

We want to show that weak Skolemization is witnessed by almost functions. We’ll need this:

Lemma

If T is weakly Skolemized, then for any $\varepsilon > 0$ and any $\varphi(\bar{x}, y)$ and $\chi(\bar{x})$, open and closed formulas, such that $\forall \bar{x} (\chi(\bar{x}) \rightarrow \exists y \varphi(\bar{x}, y))$, there is a finite sequence of \mathbb{R}-valued formulas F_0, \ldots, F_n and real numbers $\delta_0, \ldots, \delta_n < \varepsilon$ such that for any \bar{a}, if $\chi(\bar{a})$, then there is an $i \leq n$ such that $\alpha_{F_i, \delta_i}(\bar{a})$ and $\forall y (F_i \bar{a} y \leq \delta_i \rightarrow \varphi(\bar{a}, y))$.

Recall that $\alpha_{F_i, \delta_i}(\bar{x}) \equiv \exists y \left[F_i \bar{x} y < \frac{\delta_i}{2} \land \forall z \left(|d_{yz} - F_i \bar{x} z| < \frac{\delta_i}{2} \right) \right]$. These conditions at the end mean that $F_i \bar{a} y$ is ‘within δ_i of a distance predicate for a singleton’ and any y for which $F_i \bar{a} y$ is sufficiently small is a witness to $\exists y \varphi(\bar{a}, y)$.

James Hanson (UW Madison) Skolemization in Continuous Logic November 12, 2019 17 / 28
Since T is weakly Skolemized, for each $p \in [\mathbf{X}]$ we can find an \mathbb{R}-valued formula F_p such that if $\bar{a} \models p$, then $F_p\bar{a}y$ is the distance predicate of a singleton whose element witnesses $\exists y \varphi(\bar{a}, y)$. We can also find a $\delta_p > 0$ with $\delta_p < \varepsilon$, such that $\forall y (F_p\bar{a}y \leq \delta_p \rightarrow \varphi(\bar{a}, y))$, since φ is an open formula.
Proof of Lemma

Since T is weakly Skolemized, for each $p \in [\chi]$ we can find an \mathbb{R}-valued formula F_p such that if $\bar{a} \models p$, then $F_p\bar{a}y$ is the distance predicate of a singleton whose element witnesses $\exists y \varphi(\bar{a}, y)$. We can also find a $\delta_p > 0$ with $\delta_p < \varepsilon$, such that $\forall y(F_p\bar{a}y \leq \delta_p \rightarrow \varphi(\bar{a}, y))$, since φ is an open formula.

Now let $\beta_p(\bar{x}) = \alpha_{F_p, \delta_p}(\bar{x}) \land \forall y(F_p\bar{x}y \leq \delta_p \rightarrow \varphi(\bar{x}, y))$. Clearly by construction $p \models \beta_p$.
Proof of Lemma

Since T is weakly Skolemized, for each $p \in [\chi]$ we can find an \mathbb{R}-valued formula F_p such that if $\bar{a} \models p$, then $F_p \bar{a}y$ is the distance predicate of a singleton whose element witnesses $\exists y \varphi(\bar{a}, y)$. We can also find a $\delta_p > 0$ with $\delta_p < \varepsilon$, such that $\forall y (F_p \bar{a} y \leq \delta_p \rightarrow \varphi(\bar{a}, y))$, since φ is an open formula.

Now let $\beta_p(\bar{x}) = \alpha_{F_p, \delta_p}(\bar{x}) \land \forall y (F_p \bar{x} y \leq \delta_p \rightarrow \varphi(\bar{x}, y))$. Clearly by construction $p \models \beta_p$.

$\{[\beta_p]\}_{p \in [\chi]}$ is an open cover of $[\chi]$. By compactness it has a finite subcover indexed by $\{p_0, p_1, \ldots, p_n\}$. Now $F_i = F_{p_i}$ and $\delta_i = \delta_{p_i}$ are the required formulas and numbers.
Theorem (H.)

If T is weakly Skolemized, then for any open formula $\varphi(\bar{x}, y)$ such that $T \models \forall \bar{x} \exists y \varphi(\bar{x}, y)$, there is a 2^ω-indexed continuous family of \mathbb{R}-valued formulas $F : 2^\omega \times S_{\bar{x}y}(T) \to \mathbb{R}$ that defines an almost function which produces witnesses for $\forall \bar{x} \exists y \varphi(\bar{x}, y)$ (i.e., for any \bar{a} there is $t \in 2^\omega$ such that $F_t \bar{a}y$ is the distance predicate of a witness).
Theorem (H.)

If T is weakly Skolemized, then for any open formula $\varphi(\bar{x}, y)$ such that $T \models \forall \bar{x} \exists y \varphi(\bar{x}, y)$, there is a 2^ω-indexed continuous family of \mathbb{R}-valued formulas $F : 2^\omega \times S_{\bar{x}y}(T) \to \mathbb{R}$ that defines an almost function which produces witnesses for $\forall \bar{x} \exists y \varphi(\bar{x}, y)$ (i.e., for any \bar{a} there is $t \in 2^\omega$ such that $F_t\bar{a}y$ is the distance predicate of a witness).

Proof Idea. Use the lemma to get a finite list of approximate Skolem functions that approximately work. Build a finitely branching tree whose paths are increasingly better approximate Skolem functions. Use these to build the almost Skolem function.
Building Almost Skolem Functions: The Theorem

Theorem (H.)

If T is weakly Skolemized, then for any open formula $\varphi(\bar{x}, y)$ such that $T \models \forall \bar{x} \exists y \varphi(\bar{x}, y)$, there is a 2^ω-indexed continuous family of \mathbb{R}-valued formulas $F : 2^\omega \times S_x y(T) \to \mathbb{R}$ that defines an almost function which produces witnesses for $\forall \bar{x} \exists y \varphi(\bar{x}, y)$ (i.e., for any \bar{a} there is $t \in 2^\omega$ such that $F_t \bar{a} y$ is the distance predicate of a witness).

Proof Idea. Use the lemma to get a finite list of approximate Skolem functions that approximately work. Build a finitely branching tree whose paths are increasingly better approximate Skolem functions. Use these to build the almost Skolem function.

Proof. We can find an open formula $\varphi'(\bar{x}, y)$ and a closed formula $\eta(\bar{x}, y)$ such that $[\varphi'] \subseteq [\eta] \subseteq [\varphi]$, $\forall \bar{x} \exists y \varphi'(\bar{x}, y)$, and $\forall \bar{x} \exists y \eta(\bar{x}, y)$. Since $[\chi]$ is a closed and a subset of $[\varphi]$, we can find an $r > 0$ such that $\forall \bar{x} \bar{y} \bar{z} w(\chi(\bar{x}, y) \land d(\bar{x} y, \bar{z} w) \leq r \to \varphi(\bar{y}, z))$.

James Hanson (UW Madison) Skolemization in Continuous Logic November 12, 2019 19 / 28
Build a finitely branching subtree of $\omega^{<\omega}$: Let $\varphi_\emptyset = \varphi'$, $[\chi_\emptyset] = S_\bar{x}(T)$, and $\varepsilon_\emptyset = \frac{1}{2}r$.
Proof of Theorem, cont.

- Build a finitely branching subtree of $\omega^{<\omega}$: Let $\varphi_\emptyset = \varphi'$, $[\chi_\emptyset] = S\bar{x}(T)$, and $\varepsilon_\emptyset = \frac{1}{2}r$.

- Given $(\varphi_\sigma, \chi_\sigma, \varepsilon_\sigma)$ for a node σ we have by the induction hypothesis that $\forall \bar{x}(\chi_\sigma(\bar{x}) \to \exists y \varphi_\sigma(\bar{x}, y))$, so we can apply the lemma with $\varepsilon = \varepsilon_\sigma$ to get $F_{\sigma \langle 0 \rangle}, \ldots, F_{\sigma \langle n_\sigma \rangle}$ and $\delta_{\sigma \langle 0 \rangle}, \ldots, \delta_{\sigma \langle n_\sigma \rangle} < \varepsilon_\sigma$.
Proof of Theorem, cont.

- Build a finitely branching subtree of ω^ω: Let $\varphi_\emptyset = \varphi'$, $[\chi_\emptyset] = S_{\bar{x}}(T)$, and $\varepsilon_\emptyset = \frac{1}{2}r$.

- Given $(\varphi_\sigma, \chi_\sigma, \varepsilon_\sigma)$ for a node σ we have by the induction hypothesis that $\forall \bar{x}(\chi_\sigma(\bar{x}) \rightarrow \exists y \varphi_\sigma(\bar{x}, y))$, so we can apply the lemma with $\varepsilon = \varepsilon_\sigma$ to get $F_{\sigma \downarrow 0}, \ldots, F_{\sigma \downarrow n_\sigma}$ and $\delta_{\sigma \downarrow 0}, \ldots, \delta_{\sigma \downarrow n_\sigma} < \varepsilon_\sigma$.

- Let $\beta_{\sigma \downarrow i}$ be as in the proof of the lemma. (Recall: $[\beta_{\sigma \downarrow i}]$ is the set of types for which $F_{\sigma \downarrow i}$ works as an approx. Skolem function for φ_{σ}.)
Build a finitely branching subtree of $\omega^{<\omega}$: Let $\varphi_\emptyset = \varphi'$, $[\chi_\emptyset] = S\bar{x}(T)$, and $\varepsilon_\emptyset = \frac{1}{2}r$.

Given $(\varphi_\sigma, \chi_\sigma, \varepsilon_\sigma)$ for a node σ we have by the induction hypothesis that $\forall \bar{x}(\chi_\sigma(\bar{x}) \rightarrow \exists y\varphi_\sigma(\bar{x}, y))$, so we can apply the lemma with $\varepsilon = \varepsilon_\sigma$ to get $F_{\sigma\downarrow 0}, \ldots, F_{\sigma\downarrow n_\sigma}$ and $\delta_{\sigma\downarrow 0}, \ldots, \delta_{\sigma\downarrow n_\sigma} < \varepsilon_\sigma$.

Let $\beta_{\sigma\downarrow i}$ be as in the proof of the lemma. (Recall: $[\beta_{\sigma\downarrow i}]$ is the set of types for which $F_{\sigma\downarrow i}$ works as an approx. Skolem function for φ_σ.)

The sets $[\beta_{\sigma\downarrow i}]$ cover $[\chi_\sigma]$. Let $\{\chi_{\sigma\downarrow i}\}_{i \leq n_\sigma}$ be a sequence of closed formulas such that $[\chi_{\sigma\downarrow i}] \subseteq [\beta_{\sigma\downarrow i}]$ and such that $\bigcup_{i \leq n_\sigma} [\chi_{\sigma\downarrow i}] \supseteq [\chi_\sigma]$ (such formulas always exist).
Proof of Theorem, cont.

- Build a finitely branching subtree of $\omega^{<\omega}$: Let $\varphi_\emptyset = \varphi'$, $[\chi_\emptyset] = S_\bar{x}(T)$, and $\varepsilon_\emptyset = \frac{1}{2}r$.

- Given $(\varphi_\sigma, \chi_\sigma, \varepsilon_\sigma)$ for a node σ we have by the induction hypothesis that $\forall \bar{x}(\chi_\sigma(\bar{x}) \to \exists y \varphi_\sigma(\bar{x}, y))$, so we can apply the lemma with $\varepsilon = \varepsilon_\sigma$ to get $F_{\sigma\downarrow 0}, \ldots, F_{\sigma\downarrow n_\sigma}$ and $\delta_{\sigma\downarrow 0}, \ldots, \delta_{\sigma\downarrow n_\sigma} < \varepsilon_\sigma$.

- Let $\beta_{\sigma\downarrow i}$ be as in the proof of the lemma. (Recall: $[\beta_{\sigma\downarrow i}]$ is the set of types for which $F_{\sigma\downarrow i}$ works as an approx. Skolem function for φ_σ.)

- The sets $[\beta_{\sigma\downarrow i}]$ cover $[\chi_\sigma]$. Let $\{\chi_{\sigma\downarrow i}\}_{i \leq n_\sigma}$ be a sequence of closed formulas such that $[\chi_{\sigma\downarrow i}] \subseteq [\beta_{\sigma\downarrow i}]$ and such that $\bigcup_{i \leq n_\sigma} [\chi_{\sigma\downarrow i}] \supseteq [\chi_\sigma]$ (such formulas always exist).

- Let $\varphi_{\sigma\downarrow i}(\bar{x}, y) \equiv (F_{\sigma\downarrow i}(\bar{x}, y) < \delta_{\sigma\downarrow i})$ and let $\varepsilon_{\sigma\downarrow i} = \frac{1}{2} \delta_{\sigma\downarrow i}$.
Proof of Theorem, cont.

- Build a finitely branching subtree of $\omega^{<\omega}$: Let $\varphi_{\emptyset} = \varphi'$, $[\chi_{\emptyset}] = S_{\bar{x}}(T)$, and $\varepsilon_{\emptyset} = \frac{1}{2}r$.

- Given $(\varphi_\sigma, \chi_\sigma, \varepsilon_\sigma)$ for a node σ we have by the induction hypothesis that $\forall \bar{x}(\chi_\sigma(\bar{x}) \to \exists y \varphi_\sigma(\bar{x}, y))$, so we can apply the lemma with $\varepsilon = \varepsilon_\sigma$ to get $F_{\sigma \downarrow 0}, \ldots, F_{\sigma \downarrow n_\sigma}$ and $\delta_{\sigma \downarrow 0}, \ldots, \delta_{\sigma \downarrow n_\sigma} < \varepsilon_\sigma$.

- Let $\beta_{\sigma \downarrow i}$ be as in the proof of the lemma. (Recall: $[\beta_{\sigma \downarrow i}]$ is the set of types for which $F_{\sigma \downarrow i}$ works as an approx. Skolem function for φ_σ.)

- The sets $[\beta_{\sigma \downarrow i}]$ cover $[\chi_\sigma]$. Let $\{\chi_{\sigma \downarrow i}\}_{i \leq n_\sigma}$ be a sequence of closed formulas such that $[\chi_{\sigma \downarrow i}] \subseteq [\beta_{\sigma \downarrow i}]$ and such that $\bigcup_{i \leq n_\sigma}[\chi_{\sigma \downarrow i}] \supseteq [\chi_\sigma]$ (such formulas always exist).

- Let $\varphi_{\sigma \downarrow i}(\bar{x}, y) \equiv (F_{\sigma \downarrow i}(\bar{x}, y) < \delta_{\sigma \downarrow i})$ and let $\varepsilon_{\sigma \downarrow i} = \frac{1}{2}\delta_{\sigma \downarrow i}$.

- Note that by construction we have ensured the induction hypothesis for the nodes $\sigma \downarrow i$.
Let R be the tree we built. For each path $\gamma \in [R]$ (where $[R]$ is the compact Hausdorff space of paths through R), let $C_\gamma = \bigcap_{n < \omega} [\chi_{\gamma|n}]$. By construction $\bigcup_{\gamma \in [R]} C_\gamma$ covers $S_{\bar{x}}(T)$.
Let R be the tree we built. For each path $\gamma \in [R]$ (where $[R]$ is the compact Hausdorff space of paths through R), let $C_\gamma = \bigcap_{n<\omega} [\chi_\gamma | n]$. By construction $\bigcup_{\gamma \in [R]} C_\gamma$ covers $\bar{S}_x(T)$.

Let $Q = \{ (\gamma, p) \in [R] \times S_{\bar{x}y}(T) : p \upharpoonright \bar{x} \in C_\gamma \}$. This is a closed set.
Let \(R \) be the tree we built. For each path \(\gamma \in [R] \) (where \([R]\) is the compact Hausdorff space of paths through \(R \)), let \(C_\gamma = \bigcap_{n<\omega} [x_\gamma| n] \).

By construction \(\bigcup_{\gamma \in [R]} C_\gamma \) covers \(S_{\bar{x}}(T) \).

Let \(Q = \{ (\gamma, p) \in [R] \times S_{\bar{x}y}(T) : p \restriction \bar{x} \in C_\gamma \} \). This is a closed set.

For each \(n \), let \(G^n \) be a function on \([R] \times S_{\bar{x}y}(T)\) given by \(G^n_{\gamma}(\bar{x}, y) = F_{\gamma|n}(\bar{x}, y) \).
Let R be the tree we built. For each path $\gamma \in [R]$ (where $[R]$ is the compact Hausdorff space of paths through R), let $C_\gamma = \bigcap_{n<\omega} [\chi_{\gamma|n}]$. By construction $\bigcup_{\gamma \in [R]} C_\gamma$ covers $S_\bar{x}(T)$.

Let $Q = \{(\gamma, p) \in [R] \times S_{\bar{x}y}(T) : p \upharpoonright \bar{x} \in C_\gamma\}$. This is a closed set.

For each n, let G^m_n be a function on $[R] \times S_{\bar{x}y}(T)$ given by $G^m_n(\bar{x}, y) = F_{\gamma|n}(\bar{x}, y)$.

If you carefully trace what we did you can show that for any n we have that, for any $(\gamma, p) \in Q$, $|G^m_n(p) - G^{n+1}_{n}(p)| \leq 5 \cdot 2^{-n-2}\gamma$. So let $G : Q \to \mathbb{R}$ be the limit of the uniformly convergent sequence.
Let R be the tree we built. For each path $\gamma \in [R]$ (where $[R]$ is the compact Hausdorff space of paths through R), let $C_\gamma = \bigcap_{n<\omega} [\chi_{\gamma|n}]$. By construction $\bigcup_{\gamma \in [R]} C_\gamma$ covers $S_{\bar{x}}(T)$.

Let $Q = \{(\gamma, p) \in [R] \times S_{\bar{x}y}(T) : p \upharpoonright \bar{x} \in C_\gamma\}$. This is a closed set.

For each n, let G^n be a function on $[R] \times S_{\bar{x}y}(T)$ given by $G^n_\gamma(\bar{x}, y) = F_{\gamma|n}(\bar{x}, y)$.

If you carefully trace what we did you can show that for any n we have that, for any $(\gamma, p) \in Q$, $|G^n_\gamma(p) - G^{n+1}_\gamma(p)| \leq 5 \cdot 2^{-n-2}r$. So let $G : Q \to \mathbb{R}$ be the limit of the uniformly convergent sequence.

Furthermore, for any \bar{a} and γ with $\bar{a} \in C_\gamma$, $G_\gamma(\bar{a}, y)$ is the distance predicate of a singleton $\{b\}$ that always has $d(b, c) \leq r$ with some c such that $\varphi'(\bar{a}, c)$, and therefore $\chi(\bar{a}, c)$, holds. Hence $\varphi(\bar{a}, b)$ holds, as required.
Let R be the tree we built. For each path $\gamma \in [R]$ (where $[R]$ is the compact Hausdorff space of paths through R), let $C_\gamma = \bigcap_{n<\omega} [x_\gamma|n]$. By construction $\bigcup_{\gamma \in [R]} C_\gamma$ covers $S_x(T)$.

Let $Q = \{(\gamma, p) \in [R] \times S_{\bar{x}y}(T) : p \upharpoonright \bar{x} \in C_\gamma\}$. This is a closed set.

For each n, let G^n be a function on $[R] \times S_{\bar{x}y}(T)$ given by $G^n_\gamma(\bar{x}, y) = F_\gamma|n(\bar{x}, y)$.

If you carefully trace what we did you can show that for any n we have that, for any $(\gamma, p) \in Q$, $|G^n_\gamma(p) - G^{n+1}_\gamma(p)| \leq 5 \cdot 2^{-n-2}r$. So let $G : Q \to \mathbb{R}$ be the limit of the uniformly convergent sequence.

Furthermore, for any \bar{a} and γ with $\bar{a} \in C_\gamma$, $G_\gamma(\bar{a}, y)$ is the distance predicate of a singleton $\{b\}$ that always has $d(b, c) \leq r$ with some c such that $\varphi'(\bar{a}, c)$, and therefore $\chi(\bar{a}, c)$, holds. Hence $\varphi(\bar{a}, b)$ holds, as required.

Finally, pick an embedding of $[R]$ into 2^ω and use the Tietze extension theorem to continuously extend G to all of $2^\omega \times S_{\bar{x}y}(T)$. □
Corollary

If T has a weakly Skolemized expansion T', then there is a T'' with $T' \supseteq T'' \supseteq T$ such that $|\mathcal{L}''| = |\mathcal{L}|$
Corollary

If T has a weakly Skolemized expansion T', then there is a T'' with $T' \supseteq T'' \supseteq T$ such that $|\mathcal{L}''| = |\mathcal{L}|$

Proof.

If a theory has almost Skolem functions for all finitary formulas $\varphi(\bar{x}, y)$ with rational bounds that satisfy $\forall \bar{x} \exists y \varphi(\bar{x}, y)$, then it is weakly Skolemized. The number of such formulas is always at most the cardinality of the language. A definable almost function is always definable in some countable reduct. A typical iterative argument gives T''. \qed
Step I: Are complete expansions weakly Skolemized?
Complete Expansions

In discrete logic it is entirely trivial that complete expansions are Skolemized.
Complete Expansions

In discrete logic it is entirely trivial that complete expansions are Skolemized.

Definition

If M is a metric structure, the *complete expansion of M, $M^\#$*, is a metric structure with the same underlying domain as M, but with all uniformly continuous function $M^n \to \mathbb{R}$ and $M^n \to M$ added as predicates and functions.
Uniformly Locally Compact Theories

A theory T is *uniformly locally compact* if for every sufficiently small $\varepsilon > 0$ and every $\delta > 0$, there is an $N(\varepsilon, \delta) < \omega$ such that every closed ε-ball in every model of T can be covered by at most $N(\varepsilon, \delta)$ open δ-balls.
Uniformly Locally Compact Theories

A theory T is *uniformly locally compact* if for every sufficiently small $\varepsilon > 0$ and every $\delta > 0$, there is an $N(\varepsilon, \delta) < \omega$ such that every closed ε-ball in every model of T can be covered by at most $N(\varepsilon, \delta)$ open δ-balls.

Proposition (H.)

If T is uniformly locally compact, then any model $M \models T$ has an expansion M' such that $\text{Th}(M')$ is weakly Skolemized.
Uniformly Locally Compact Theories

A theory T is uniformly locally compact if for every sufficiently small $\varepsilon > 0$ and every $\delta > 0$, there is an $N(\varepsilon, \delta) < \omega$ such that every closed ε-ball in every model of T can be covered by at most $N(\varepsilon, \delta)$ open δ-balls.

Proposition (H.)

If T is uniformly locally compact, then any model $M \models T$ has an expansion M' such that $\text{Th}(M')$ is weakly Skolemized.

Proof (for \mathbb{R}).

Suppose T has a model M whose underlying metric space is uniformly equivalent to \mathbb{R}. Add distance predicates $\{D_r\}_{r \in [0,1)}$ for each set of the form $\mathbb{Z} + r$. Since each D_r is uniformly discrete, we can Skolemize it na"ively. By uniform local compactness, for every $N \models T'$ and every $a \in N$ there is an $r \in [0,1)$ such that $a \in D_r(N)$. Therefore every such a is in the domain of a complete set of Skolem functions on some definable domain. It follows that T' is weakly Skolemized.
Proof does not generalize I

Theorem (Milman)

Let M be a metric structure based on the unit sphere of an infinite dimensional Hilbert space. There is a complete type $p \in S_1(Th(M))$ such that in some $N \succeq M$, $p(N)$ contains the unit sphere of an infinite dimensional Hilbert subspace.
Corollary (H.)

If D is the distance predicate of a definable subset of M whose distinct points are $(\geq \varepsilon)$-separated, then for any $a \models p$, $d(a, D) \geq \frac{\varepsilon}{2}$.
Corollary (H.)

If \(D \) is the distance predicate of a definable subset of \(M \) whose distinct points are \((\geq \varepsilon) \)-separated, then for any \(a \models p \), \(d(a, D) \geq \frac{\varepsilon}{2} \).

Proof.

Since \(p \) is a complete type, there is an \(r \) such that for any \(a \models p \), \(d(a, D) = r \). Assume that \(r < \frac{\varepsilon}{2} \) and work in a saturated enough model. Find \(b \in D \) such that for some \(a \models p \), \(d(a, b) = r \). Since \(a \) is contained in an infinite dimensional Hilbert subspace of realizations of \(p \), by Euclidean geometry there is a \(c \models p \) such that \(r < d(a, c) < \frac{\varepsilon}{2} \). There must be an \(e \in D \setminus \{a\} \) such that \(d(c, e) = r \), but this implies that \(d(a, e) \leq d(a, c) + d(c, e) < \frac{\varepsilon}{2} + r < \varepsilon \), which is a contradiction. \(\square \)
Thank you