Independence in arbitrary theories via automorphism groups and large cardinals

James Hanson

University of Maryland, College Park

March 3, 2023 SEALS 2024 University of Florida

Something for nothing: Independence in arbitrary theories

In tame contexts: Independence notion \Rightarrow Generic sequences

■ Stable and simple: Non-forking ⇒ Morley sequences

- Stable and simple: Non-forking \Rightarrow Morley sequences
- NIP and NTP₂: Strict invariance \Rightarrow Strict Morley sequences

- Stable and simple: Non-forking \Rightarrow Morley sequences
- NIP and NTP₂: Strict invariance \Rightarrow Strict Morley sequences
- NSOP₁: Non-Kim-forking \Rightarrow Tree Morley sequences

- Stable and simple: Non-forking \Rightarrow Morley sequences
- NIP and NTP₂: Strict invariance \Rightarrow Strict Morley sequences
- NSOP₁: Non-Kim-forking ⇒ Tree Morley sequences
- Rosy: Non- \flat -forking $\Rightarrow \flat$ -Morley sequences

In tame contexts: Independence notion \Rightarrow Generic sequences

- Stable and simple: Non-forking \Rightarrow Morley sequences
- NIP and NTP₂: Strict invariance \Rightarrow Strict Morley sequences
- NSOP₁: Non-Kim-forking ⇒ Tree Morley sequences
- Rosy: Non-b-forking ⇒ b-Morley sequences

Given an independence notion \downarrow^* , two questions:

In tame contexts: Independence notion \Rightarrow Generic sequences

- Stable and simple: Non-forking \Rightarrow Morley sequences
- NIP and NTP₂: Strict invariance \Rightarrow Strict Morley sequences
- NSOP₁: Non-Kim-forking ⇒ Tree Morley sequences
- Rosy: Non-þ-forking ⇒ þ-Morley sequences

Given an independence notion \downarrow^* , two questions:

Q1 Does __* satisfy full existence?

In tame contexts: Independence notion \Rightarrow Generic sequences

- Stable and simple: Non-forking \Rightarrow Morley sequences
- NIP and NTP₂: Strict invariance \Rightarrow Strict Morley sequences
- NSOP₁: Non-Kim-forking ⇒ Tree Morley sequences
- Rosy: Non-b-forking ⇒ b-Morley sequences

Given an independence notion \bigcup^* , two questions:

- Q1 Does __* satisfy full existence?
 - If so, we can build \bigcup^* -Morley sequences: $(b_i)_{i<\omega}$ s.t. $b_i \bigcup_A^* b_{< i}$.

In tame contexts: Independence notion \Rightarrow Generic sequences

- Stable and simple: Non-forking \Rightarrow Morley sequences
- NIP and NTP₂: Strict invariance \Rightarrow Strict Morley sequences
- NSOP₁: Non-Kim-forking ⇒ Tree Morley sequences
- Rosy: Non-þ-forking ⇒ þ-Morley sequences

Given an independence notion \downarrow^* , two questions:

- Q1 Does __* satisfy full existence?
 - If so, we can build \bigcup^* -Morley sequences: $(b_i)_{i<\omega}$ s.t. $b_i \bigcup_A^* b_{< i}$.
 - Usually want a total $\bigcup_{i=1}^*$ -Morley sequence: $(b_i)_{i<\omega}$ s.t. if $I+J\equiv^{\mathrm{EM}}_A b_{<\omega}$, then $J\bigcup_{A}^* I$.

In tame contexts: Independence notion \Rightarrow Generic sequences

- Stable and simple: Non-forking \Rightarrow Morley sequences
- NIP and NTP₂: Strict invariance ⇒ Strict Morley sequences
- NSOP₁: Non-Kim-forking ⇒ Tree Morley sequences
- Rosy: Non-þ-forking ⇒ þ-Morley sequences

Given an independence notion \downarrow^* , two questions:

- Q1 Does __* satisfy full existence?
 - If so, we can build \bigcup^* -Morley sequences: $(b_i)_{i<\omega}$ s.t. $b_i \bigcup_A^* b_{< i}$.
 - Usually want a total $\bigcup_{i=1}^*$ -Morley sequence: $(b_i)_{i<\omega}$ s.t. if $I+J\equiv^{\mathrm{EM}}_A b_{<\omega}$, then $J\bigcup_{A}^* I$.
- Q2 Can we build total <u></u>*-Morley sequences?

What can we do in arbitrary theories?

What can we do in arbitrary theories?

■ Weakest 'reasonable' independence relation:

$$b \underset{A}{\bigcup_{a}} c \Leftrightarrow \operatorname{acl}(Ab) \cap \operatorname{acl}(Ac) = \operatorname{acl}(A)$$

What can we do in arbitrary theories?

Weakest 'reasonable' independence relation:

$$b \underset{A}{\bigcup_{a}} c \Leftrightarrow \operatorname{acl}(Ab) \cap \operatorname{acl}(Ac) = \operatorname{acl}(A)$$

■ Good news:

a satisfies full existence in arbitrary theories (folklore for discrete? Conant—H. for continuous).

What can we do in arbitrary theories?

■ Weakest 'reasonable' independence relation:

$$b \underset{A}{\bigcup_{a}} c \Leftrightarrow \operatorname{acl}(Ab) \cap \operatorname{acl}(Ac) = \operatorname{acl}(A)$$

- Good news:

 a satisfies full existence in arbitrary theories (folklore for discrete? Conant—H. for continuous).

Hyperimaginary: An equivalence class b_E of a type-definable equivalence relation E.

Hyperimaginary: An equivalence class b_E of a type-definable equivalence relation E.

Example: |x - y| is infinitesimal' in RCF.

Hyperimaginary: An equivalence class b_E of a type-definable equivalence relation E.

- **Example:** |x y| is infinitesimal' in RCF.
- Bounded closure: $b_E \in bdd(A) \Leftrightarrow `Aut(M/A) \cdot b_E$ is small'

Hyperimaginary: An equivalence class b_E of a type-definable equivalence relation E.

- **Example:** |x y| is infinitesimal' in RCF.
- Bounded closure: $b_E \in \mathsf{bdd}(A) \Leftrightarrow \mathsf{`Aut}(\mathbb{M}/A) \cdot b_E$ is small'
- Reasonable definition:

$$b \underset{A}{\bigcup^{b}} c \Leftrightarrow \mathsf{bdd}(Ab) \cap \mathsf{bdd}(Ac) = \mathsf{bdd}(A)$$

Hyperimaginary: An equivalence class b_E of a type-definable equivalence relation E.

- **Example:** |x y| is infinitesimal' in RCF.
- Bounded closure: $b_E \in \mathsf{bdd}(A) \Leftrightarrow \mathsf{`Aut}(\mathbb{M}/A) \cdot b_E$ is small'
- Reasonable definition:

$$b \underset{A}{\bigcup_{b}} c \Leftrightarrow \mathsf{bdd}(Ab) \cap \mathsf{bdd}(Ac) = \mathsf{bdd}(A)$$

Good news: Full existence in arbitrary theories (Conant-H.).

Hyperimaginary: An equivalence class b_E of a type-definable equivalence relation E.

- **Example:** |x y| is infinitesimal' in RCF.
- Bounded closure: $b_E \in \mathsf{bdd}(A) \Leftrightarrow \mathsf{`Aut}(\mathbb{M}/A) \cdot b_E$ is small'
- Reasonable definition:

$$b \underset{A}{\bigcup^{b}} c \Leftrightarrow \mathsf{bdd}(Ab) \cap \mathsf{bdd}(Ac) = \mathsf{bdd}(A)$$

- Good news: Full existence in arbitrary theories (Conant–H.).
- Bad news: Somewhat infinitary.

Hyperimaginary: An equivalence class b_E of a type-definable equivalence relation E.

- **Example:** |x y| is infinitesimal' in RCF.
- Bounded closure: $b_E \in \mathsf{bdd}(A) \Leftrightarrow \mathsf{`Aut}(\mathbb{M}/A) \cdot b_E$ is small'
- Reasonable definition:

$$b \underset{A}{\bigcup_{b}} c \Leftrightarrow \mathsf{bdd}(Ab) \cap \mathsf{bdd}(Ac) = \mathsf{bdd}(A)$$

- Good news: Full existence in arbitrary theories (Conant-H.).
- Bad news: Somewhat infinitary. Doesn't seem to mean much in arbitrary theories,

Hyperimaginary: An equivalence class b_E of a type-definable equivalence relation E.

- **Example:** |x y| is infinitesimal' in RCF.
- Bounded closure: $b_E \in \mathsf{bdd}(A) \Leftrightarrow \mathsf{`Aut}(\mathbb{M}/A) \cdot b_E$ is small'
- Reasonable definition:

$$b \underset{A}{\bigcup_{b}} c \Leftrightarrow \mathsf{bdd}(Ab) \cap \mathsf{bdd}(Ac) = \mathsf{bdd}(A)$$

- Good news: Full existence in arbitrary theories (Conant–H.).
- Bad news: Somewhat infinitary. Doesn't seem to mean much in arbitrary theories, but it does mean something:

Theorem (essentially Adler?)

 $(T \text{ simple}) (b_i)_{i \in I}$ is a Morley sequence over A iff it is a total \bigcup^b -Morley sequence over A.

Ultraimaginary: An equivalence class b_E of an **invariant** equivalence relation E.

Ultraimaginary: An equivalence class b_E of an **invariant** equivalence relation E.

Example: |x - y| is finite in RCF.

Ultraimaginary: An equivalence class b_E of an **invariant** equivalence relation E.

- **Example:** |x y| is finite in RCF.
- Bounded closure: $b_E \in \mathsf{bdd}^\mathsf{u}(A) \Leftrightarrow \mathsf{`Aut}(\mathbb{M}/A) \cdot b_E$ is small'

Ultraimaginary: An equivalence class b_E of an **invariant** equivalence relation E.

- **Example:** |x y| is finite' in RCF.
- Bounded closure: $b_E \in \mathsf{bdd}^\mathsf{u}(A) \Leftrightarrow \mathsf{`Aut}(\mathbb{M}/A) \cdot b_E$ is small'
- Reasonable(?) definition:

$$b \underset{A}{\bigcup_{bu}} c \Leftrightarrow \mathsf{bdd}^{\mathsf{u}}(Ab) \cap \mathsf{bdd}^{\mathsf{u}}(Ac) = \mathsf{bdd}^{\mathsf{u}}(A)$$

Ultraimaginary: An equivalence class b_E of an **invariant** equivalence relation E.

- **Example:** |x y| is finite' in RCF.
- Bounded closure: $b_E \in \mathsf{bdd}^\mathsf{u}(A) \Leftrightarrow \mathsf{`Aut}(\mathbb{M}/A) \cdot b_E$ is small'
- Reasonable(?) definition:

$$b \underset{A}{\bigcup_{bu}} c \Leftrightarrow \mathsf{bdd}^{\mathsf{u}}(Ab) \cap \mathsf{bdd}^{\mathsf{u}}(Ac) = \mathsf{bdd}^{\mathsf{u}}(A)$$

Bad news:

Ultraimaginary: An equivalence class b_E of an **invariant** equivalence relation E.

- **Example:** |x y| is finite' in RCF.
- Bounded closure: $b_E \in \mathsf{bdd}^\mathsf{u}(A) \Leftrightarrow \mathsf{`Aut}(\mathbb{M}/A) \cdot b_E$ is small'
- Reasonable(?) definition:

$$b \stackrel{\mathsf{bu}}{\downarrow} c \Leftrightarrow \mathsf{bdd}^{\mathsf{u}}(Ab) \cap \mathsf{bdd}^{\mathsf{u}}(Ac) = \mathsf{bdd}^{\mathsf{u}}(A)$$

Bad news: No compactness,

Ultraimaginary: An equivalence class b_E of an **invariant** equivalence relation E.

- **Example:** |x y| is finite' in RCF.
- Bounded closure: $b_E \in \mathsf{bdd}^\mathsf{u}(A) \Leftrightarrow \mathsf{`Aut}(\mathbb{M}/A) \cdot b_E$ is small'
- Reasonable(?) definition:

$$b \stackrel{\mathsf{bu}}{\downarrow} c \Leftrightarrow \mathsf{bdd}^{\mathsf{u}}(Ab) \cap \mathsf{bdd}^{\mathsf{u}}(Ac) = \mathsf{bdd}^{\mathsf{u}}(A)$$

Bad news: No compactness, highly infinitary,

Ultraimaginary: An equivalence class b_E of an **invariant** equivalence relation E.

- **Example:** |x y| is finite' in RCF.
- Bounded closure: $b_E \in \mathsf{bdd}^\mathsf{u}(A) \Leftrightarrow \mathsf{`Aut}(\mathbb{M}/A) \cdot b_E$ is small'
- Reasonable(?) definition:

$$b \stackrel{\mathsf{bu}}{\downarrow} c \Leftrightarrow \mathsf{bdd}^{\mathsf{u}}(Ab) \cap \mathsf{bdd}^{\mathsf{u}}(Ac) = \mathsf{bdd}^{\mathsf{u}}(A)$$

■ Bad news: No compactness, highly infinitary, generally sketchy, etc.

Ultraimaginary: An equivalence class b_E of an **invariant** equivalence relation E.

- **Example:** |x y| is finite in RCF.
- Bounded closure: $b_E \in \mathsf{bdd}^\mathsf{u}(A) \Leftrightarrow \mathsf{`Aut}(\mathbb{M}/A) \cdot b_E$ is small'
- Reasonable(?) definition:

$$b \stackrel{\mathsf{bu}}{\downarrow} c \Leftrightarrow \mathsf{bdd}^{\mathsf{u}}(Ab) \cap \mathsf{bdd}^{\mathsf{u}}(Ac) = \mathsf{bdd}^{\mathsf{u}}(A)$$

- Bad news: No compactness, highly infinitary, generally sketchy, etc.

What something does _bu mean?

Autf(M/A) is the group generated by

$$\bigcup \{\operatorname{Aut}(\mathbb{M}/M) : A \subseteq M \models T\}.$$

What something does \bigcup_{bu} mean?

Autf(M/A) is the group generated by

$$\bigcup \{\operatorname{Aut}(\mathbb{M}/M) : A \subseteq M \models T\}.$$

 $b \equiv^{\mathsf{L}}_{A} b' \text{ iff } b' \in \mathsf{Autf}(\mathbb{M}/A) \cdot b.$

What something does _bu mean?

 $\operatorname{\mathsf{Autf}}(\mathbb{M}/A)$ is the group generated by

$$\bigcup \{\operatorname{Aut}(\mathbb{M}/M) : A \subseteq M \models T\}.$$

 $b \equiv^{\mathsf{L}}_{\mathcal{A}} b' \text{ iff } b' \in \mathsf{Autf}(\mathbb{M}/\mathcal{A}) \cdot b.$

Theorem (essentially Wagner)

TFAE:

 \bullet $b \downarrow_A^{\text{bu}} c$

What something does __bu mean?

 $\operatorname{Autf}(\mathbb{M}/A)$ is the group generated by

$$\bigcup \{\operatorname{Aut}(\mathbb{M}/M) : A \subseteq M \models T\}.$$

 $b \equiv^{\mathsf{L}}_{\mathcal{A}} b' \text{ iff } b' \in \mathsf{Autf}(\mathbb{M}/\mathcal{A}) \cdot b.$

Theorem (essentially Wagner)

TFAE:

- \bullet $b \bigcup_A^{\text{bu}} c$
- Autf(\mathbb{M}/A) is generated by Autf(\mathbb{M}/Ab) \cup Autf(\mathbb{M}/Ac).

What something does __bu mean?

 $\operatorname{Autf}(\mathbb{M}/A)$ is the group generated by

$$\bigcup \{\operatorname{Aut}(\mathbb{M}/M) : A \subseteq M \models T\}.$$

 $b \equiv^{\mathsf{L}}_{\mathcal{A}} b' \text{ iff } b' \in \mathsf{Autf}(\mathbb{M}/\mathcal{A}) \cdot b.$

Theorem (essentially Wagner)

TFAE:

- \bullet $b \bigcup_{A}^{bu} c$
- Autf(\mathbb{M}/A) is generated by Autf(\mathbb{M}/Ab) \cup Autf(\mathbb{M}/Ac).
- A third thing that I'm skipping for time.

Since \bigcup_{bu} has semantic consequences, are total \bigcup_{bu} -Morley sequences special?

Since \bigcup^{bu} has semantic consequences, are total \bigcup^{bu} -Morley sequences special?

■ $I \sim_A J$ if I + J is A-indiscernible.

Since \bigcup^{bu} has semantic consequences, are total \bigcup^{bu} -Morley sequences special?

- $I \sim_A J$ if I + J is A-indiscernible.
- $lpha_A$ is the equivalence relation on infinite A-indiscernible sequences generated by \sim_A .

Since \bigcup_{bu} has semantic consequences, are total \bigcup_{bu} -Morley sequences special?

- $I \sim_A J$ if I + J is A-indiscernible.
- $lpha_A$ is the equivalence relation on infinite A-indiscernible sequences generated by \sim_A .
- Shelah's definition in early simplicity theory: I is based on A if $I \equiv_A J \Leftrightarrow I \approx_A J$.

Since \bigcup^{bu} has semantic consequences, are total \bigcup^{bu} -Morley sequences special?

- $I \sim_A J$ if I + J is A-indiscernible.
- $lpha_A$ is the equivalence relation on infinite A-indiscernible sequences generated by \sim_A .
- Shelah's definition in early simplicity theory: I is based on A if $I \equiv_A J \Leftrightarrow I \approx_A J$.

Theorem (H.)

 $(b_i)_{i<\omega}$ is a total \bigcup_{b^u} -Morley sequence over A iff it is based on $bdd^u(A)$ (i.e. $I \equiv_A^L b_{<\omega} \Leftrightarrow I \approx_A b_{<\omega}$).

Since \bigcup^{bu} has semantic consequences, are total \bigcup^{bu} -Morley sequences special?

- $I \sim_A J$ if I + J is A-indiscernible.
- $lpha_A$ is the equivalence relation on infinite A-indiscernible sequences generated by \sim_A .
- Shelah's definition in early simplicity theory: I is based on A if $I \equiv_A J \Leftrightarrow I \approx_A J$.

Theorem (H.)

 $(b_i)_{i<\omega}$ is a total \bigcup_{b^u} -Morley sequence over A iff it is based on $bdd^u(A)$ (i.e. $I \equiv_A^L b_{<\omega} \Leftrightarrow I \approx_A b_{<\omega}$).

Proof.

Use the third thing I skipped for time (see slides 20-21).

Q1: Full existence?

Given (real) A, b, and c, can we find $b' \equiv_A b$ such that $b' \downarrow_A^{bu} c$?

Q1: Full existence?

Given (real) A, b, and c, can we find $b' \equiv_A b$ such that $b' \downarrow_A^{\text{bu}} c$?

Theorem (H.)

Yes.

Q1: Full existence?

Given (real) A, b, and c, can we find $b' \equiv_A b$ such that $b' \downarrow_A^{\text{bu}} c$?

Theorem (H.)

Yes.

Proof.

Horrible indiscernible tree combinatorics à la Kaplan-Ramsey.

Corollary: Relationship with non-dividing

There is a 'chain condition': If $(b_i)_{i<\omega}$ is a $\bigcup_{b=0}^{bu}$ -Morley sequence over A that is Ac-indiscernible, then $c \bigcup_{a=0}^{bu} b_0$.

Corollary: Relationship with non-dividing

There is a 'chain condition': If $(b_i)_{i<\omega}$ is a $\bigcup_{c=0}^{bu}$ -Morley sequence over A that is Ac-indiscernible, then $c\bigcup_{c=0}^{bu}b_0$.

Corollary (H.)

$$\uparrow_q\Rightarrow\uparrow_{pn}$$

Corollary: Relationship with non-dividing

There is a 'chain condition': If $(b_i)_{i<\omega}$ is a $\bigcup_{c=0}^{bu}$ -Morley sequence over A that is Ac-indiscernible, then $c\bigcup_{c=0}^{bu}b_0$.

Corollary (H.)

$$\downarrow^d \Rightarrow \downarrow^{bu}$$

Corollary of Corollary

In a simple theory, $(b_i)_{i<\omega}$ is a Morley sequence over A if and only if it is a total $\bigcup_{i=0}^{bu}$ -Morley sequence over A.

What about NSOP₁ theories?

What about NSOP₁ theories?

Proposition (H.)

 $(T \text{ NSOP}_1)$ If I is a tree Morley sequence over $M \models T$, then I is a total \downarrow^{bu} -Morley sequence over M.

What about NSOP₁ theories?

Proposition (H.)

 $(T \text{ NSOP}_1)$ If I is a tree Morley sequence over $M \models T$, then I is a total $\bigcup_{i=1}^{bu}$ -Morley sequence over M.

Proof.

Fix $J \equiv_M I$.

What about NSOP₁ theories?

Proposition (H.)

 $(T \text{ NSOP}_1)$ If I is a tree Morley sequence over $M \models T$, then I is a total $\bigcup_{i=1}^{bu}$ -Morley sequence over M.

Proof.

Fix $J \equiv_M I$. Find $K \equiv_M I$ with $K \perp_M^K IJ$.

What about NSOP₁ theories?

Proposition (H.)

 $(T \text{ NSOP}_1)$ If I is a tree Morley sequence over $M \models T$, then I is a total $\bigcup_{i=1}^{bu}$ -Morley sequence over M.

Proof.

Fix $J \equiv_M I$. Find $K \equiv_M I$ with $K \downarrow_M^K IJ$. By the independence theorem, we can find I^* and J^* such that $I + I^*$, $K + I^*$, $K + J^*$, and $J + J^*$ are all M-indiscernible, so $I \approx_M J$.

What about NSOP₁ theories?

Proposition (H.)

 $(T \text{ NSOP}_1)$ If I is a tree Morley sequence over $M \models T$, then I is a total $\bigcup_{i=1}^{bu}$ -Morley sequence over M.

Proof.

Fix $J \equiv_M I$. Find $K \equiv_M I$ with $K \downarrow_M^K IJ$. By the independence theorem, we can find I^* and J^* such that $I + I^*$, $K + I^*$, $K + J^*$, and $J + J^*$ are all M-indiscernible, so $I \approx_M J$.

Converse?

What about NSOP₁ theories?

Proposition (H.)

 $(T \text{ NSOP}_1)$ If I is a tree Morley sequence over $M \models T$, then I is a total \downarrow^{bu} -Morley sequence over M.

Proof.

Fix $J \equiv_M I$. Find $K \equiv_M I$ with $K \downarrow_M^K IJ$. By the independence theorem, we can find I^* and J^* such that $I + I^*$, $K + I^*$, $K + J^*$, and $J + J^*$ are all M-indiscernible, so $I \approx_M J$.

- Converse?
- Odd observation: In stable theories, you get a ' \sim_A -distance' of 2. In simple theories, you get 3. And in NSOP₁ theories, you get 4.

Q2: Total | bu-Morley sequences?

Given A and b, can we find a total $\bigcup_{i=0}^{bu}$ -Morley sequence $(b_i)_{i<\omega}$ over A with $b_0=b$?

Q2: Total _bu-Morley sequences?

Given A and b, can we find a total $\bigcup_{i=0}^{bu}$ -Morley sequence $(b_i)_{i<\omega}$ over A with $b_0=b$?

Theorem (H.)

Yes,

Q2: Total _bu-Morley sequences?

Given A and b, can we find a total $\bigcup_{i=0}^{bu}$ -Morley sequence $(b_i)_{i<\omega}$ over A with $b_0=b$?

Theorem (H.)

Yes, if we have an Erdős cardinal $\kappa > |Ab| + |T|$.

Q2: Total Jbu-Morley sequences?

Given A and b, can we find a total $\bigcup_{i=0}^{bu}$ -Morley sequence $(b_i)_{i<\omega}$ over A with $b_0=b$?

Theorem (H.)

Yes, if we have an Erdős cardinal $\kappa > |Ab| + |T|$.

Proof.

More horrible indiscernible tree combinatorics à la Kaplan-Ramsey but with some large cardinal infinitary Ramsey theory at the end.

Q2: Total _bu-Morley sequences?

Given A and b, can we find a total $\bigcup_{i=0}^{bu}$ -Morley sequence $(b_i)_{i<\omega}$ over A with $b_0=b$?

Theorem (H.)

Yes, if we have an Erdős cardinal $\kappa > |Ab| + |T|$.

Proof.

More horrible indiscernible tree combinatorics à la Kaplan-Ramsey but with some large cardinal infinitary Ramsey theory at the end.

Does this actually need large cardinals?

Q2: Total _bu-Morley sequences?

Given A and b, can we find a total $\bigcup_{i=0}^{bu}$ -Morley sequence $(b_i)_{i<\omega}$ over A with $b_0=b$?

Theorem (H.)

Yes, if we have an Erdős cardinal $\kappa > |Ab| + |T|$.

Proof.

More horrible indiscernible tree combinatorics à la Kaplan-Ramsey but with some large cardinal infinitary Ramsey theory at the end.

- Does this actually need large cardinals?
- Without any set theoretic hypotheses, we can get a half-infinite approximation: Sequence $(b_i)_{i<\omega}$ such that $b_{< i} \bigcup_A^{\mathsf{bu}} b_{\geq i}$ for each $i<\omega$.

Applications

Strong witnesses of Lascar strong type

Fix A and b and suppose there is a total \bigcup^{bu} -Morley sequence $I \ni b$. For any b' with $b' \equiv^{\mathbf{L}}_A b$, we have the configuration

with $I_0 = I$, $b' \in I_n$, and $I_i + J_{i+1}$ and $I_{i+2} + J_{i+1}$ A-indiscernible for all i.

Strong witnesses of Lascar strong type

Fix A and b and suppose there is a total \bigcup^{bu} -Morley sequence $I \ni b$. For any b' with $b' \equiv^{\mathbf{L}}_A b$, we have the configuration

$$I_0 \xrightarrow{b} \vdots \qquad \qquad J_1$$
 $I_2 \xrightarrow{} J_3$
 $I_4 \xrightarrow{} \vdots \qquad \qquad J_{n-1}$

with $I_0 = I$, $b' \in I_n$, and $I_i + J_{i+1}$ and $I_{i+2} + J_{i+1}$ A-indiscernible for all i.

This is similar to a configuration in the proof of the independence theorem.

Variants of the independence theorem can generally be phrased like this:

Variants of the independence theorem can generally be phrased like this:

Theorems (Shelah, Hrushovski, Kim–Pillay, Ben Yaacov–Chernikov, Kaplan–Ramsey, Simon, Dobrowolski–Kim–Ramsey, etc.)

(T nice, maybe) Let $\Sigma(x)$ be an A-invariant partial type satisfying a chain condition. Assume that $c \models \Sigma \upharpoonright Aab$ and $b \equiv_A^L b'$ and that a, b, and b' are sufficiently independent of one another. Then there exists a $c' \models \Sigma \upharpoonright Aab'$ such that $ac' \equiv_A ac$ and $b'c' \equiv_A bc$.

Variants of the independence theorem can generally be phrased like this:

Theorems (Shelah, Hrushovski, Kim–Pillay, Ben Yaacov–Chernikov, Kaplan–Ramsey, Simon, Dobrowolski–Kim–Ramsey, etc.)

(T nice, maybe) Let $\Sigma(x)$ be an A-invariant partial type satisfying a chain condition. Assume that $c \models \Sigma \upharpoonright Aab$ and $b \equiv_A^L b'$ and that a, b, and b' are sufficiently independent of one another. Then there exists a $c' \models \Sigma \upharpoonright Aab'$ such that $ac' \equiv_A ac$ and $b'c' \equiv_A bc$.

Variants of the independence theorem can generally be phrased like this:

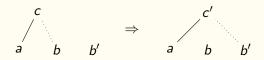
Theorems (Shelah, Hrushovski, Kim–Pillay, Ben Yaacov–Chernikov, Kaplan–Ramsey, Simon, Dobrowolski–Kim–Ramsey, etc.)

(T nice, maybe) Let $\Sigma(x)$ be an A-invariant partial type satisfying a chain condition. Assume that $c \models \Sigma \upharpoonright Aab$ and $b \equiv_A^L b'$ and that a, b, and b' are sufficiently independent of one another. Then there exists a $c' \models \Sigma \upharpoonright Aab'$ such that $ac' \equiv_A ac$ and $b'c' \equiv_A bc$.

Variants of the independence theorem can generally be phrased like this:

Theorems (Shelah, Hrushovski, Kim–Pillay, Ben Yaacov–Chernikov, Kaplan–Ramsey, Simon, Dobrowolski–Kim–Ramsey, etc.)

(T nice, maybe) Let $\Sigma(x)$ be an A-invariant partial type satisfying a chain condition. Assume that $c \models \Sigma \upharpoonright Aab$ and $b \equiv_A^L b'$ and that a, b, and b' are sufficiently independent of one another. Then there exists a $c' \models \Sigma \upharpoonright Aab'$ such that $ac' \equiv_A ac$ and $b'c' \equiv_A bc$.



 $\Sigma(x)$ is often a *generically prime* filter: If $(b_i)_{i<\omega}$ is A-indiscernible and $\Sigma(x) \vdash \varphi(x, b_0) \lor \varphi(x, b_1)$, then $\Sigma(x) \vdash \varphi(x, b_0)$.

Can use total _bu-Morley sequences for notion of independence, but still need a strong chain condition, namely generic primality.

Can use total _bu-Morley sequences for notion of independence, but still need a strong chain condition, namely generic primality.

Proposition (H.)

Let $\Sigma(x)$ be A-invariant and generically prime over A. For any a, I, I', and c, if

- $I \equiv_A^L I'$ are total \bigcup_{bu} -Morley sequences over A,
- $c \models \Sigma \upharpoonright Aab$ for all $b \in I$, and
- $|I|, |I'| > 2^{|Aabc|+|T|},$

then there are $b \in I$, $b' \in I'$, and $c' \models \Sigma \upharpoonright Aab'$ such that $ac' \equiv_A ac$ and $b'c' \equiv_A bc$.

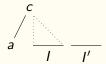
Can use total _bu-Morley sequences for notion of independence, but still need a strong chain condition, namely generic primality.

Proposition (H.)

Let $\Sigma(x)$ be A-invariant and generically prime over A. For any a, I, I', and c, if

- $I \equiv_A^L I'$ are total \bigcup_{bu} -Morley sequences over A,
- $c \models \Sigma \upharpoonright Aab$ for all $b \in I$, and
- $|I|, |I'| > 2^{|Aabc|+|T|},$

then there are $b \in I$, $b' \in I'$, and $c' \models \Sigma \upharpoonright Aab'$ such that $ac' \equiv_A ac$ and $b'c' \equiv_A bc$.



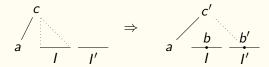
Can use total _bu-Morley sequences for notion of independence, but still need a strong chain condition, namely generic primality.

Proposition (H.)

Let $\Sigma(x)$ be A-invariant and generically prime over A. For any a, I, I', and c, if

- $I \equiv_A^L I'$ are total \bigcup_{bu} -Morley sequences over A,
- lacksquare $c \models \Sigma \upharpoonright Aab$ for all $b \in I$, and
- $|I|, |I'| > 2^{|Aabc|+|T|},$

then there are $b \in I$, $b' \in I'$, and $c' \models \Sigma \upharpoonright Aab'$ such that $ac' \equiv_A ac$ and $b'c' \equiv_A bc$.



Proposition (H.)

Let $\Sigma(x)$ be A-invariant and generically prime over A. For any a, $b \equiv_A^L b'$, and c, if

- $c \models \Sigma \upharpoonright Aab$ and
- there is a total \bigcup_{b}^{bu} -Morley sequence $I \ni b$ over A that is Aa-indiscernible,

then there are b'' and $c' \models \Sigma \upharpoonright Aab''$ such that $ac' \equiv_A ac$, $b''c' \equiv_A bc$, and $d_A^{\mathsf{L}}(b',b'') \leq 1$.

Proposition (H.)

Let $\Sigma(x)$ be A-invariant and generically prime over A. For any a, $b \equiv_A^L b'$, and c, if

- $c \models \Sigma \upharpoonright Aab$ and
- there is a total \bigcup_{b}^{bu} -Morley sequence $I \ni b$ over A that is Aa-indiscernible,

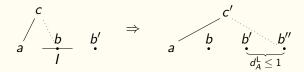
then there are b'' and $c' \models \Sigma \upharpoonright Aab''$ such that $ac' \equiv_A ac$, $b''c' \equiv_A bc$, and $d_A^{\mathsf{L}}(b',b'') \leq 1$.

Proposition (H.)

Let $\Sigma(x)$ be A-invariant and generically prime over A. For any a, $b \equiv_A^L b'$, and c, if

- $c \models \Sigma \upharpoonright Aab$ and
- there is a total \bigcup_{b}^{bu} -Morley sequence $I \ni b$ over A that is Aa-indiscernible,

then there are b'' and $c' \models \Sigma \upharpoonright Aab''$ such that $ac' \equiv_A ac$, $b''c' \equiv_A bc$, and $d_A^{\mathsf{L}}(b',b'') \leq 1$.

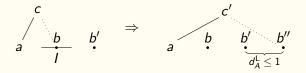


Proposition (H.)

Let $\Sigma(x)$ be A-invariant and generically prime over A. For any $a, b \equiv^{\mathsf{L}}_A b'$, and c, if

- $c \models \Sigma \upharpoonright Aab$ and
- there is a total \bigcup_{b}^{bu} -Morley sequence $I \ni b$ over A that is Aa-indiscernible,

then there are b'' and $c' \models \Sigma \upharpoonright Aab''$ such that $ac' \equiv_A ac$, $b''c' \equiv_A bc$, and $d_A^{\mathsf{L}}(b',b'') \leq 1$.



Can we weaken the generic primality requirement?

Thank you

Autf(M/A) is the group generated by

$$\bigcup \{\operatorname{Aut}(\mathbb{M}/M) : A \subseteq M \models T\}.$$

Autf(M/A) is the group generated by

$$\bigcup \{\operatorname{Aut}(\mathbb{M}/M) : A \subseteq M \models T\}.$$

$$b \equiv^{\mathsf{L}}_{A} b' \text{ iff } b' \in \mathsf{Autf}(\mathbb{M}/A) \cdot b.$$

Autf(M/A) is the group generated by

$$\bigcup \{\operatorname{Aut}(\mathbb{M}/M) : A \subseteq M \models T\}.$$

$$b \equiv^{\mathsf{L}}_{A} b' \text{ iff } b' \in \mathsf{Autf}(\mathbb{M}/A) \cdot b.$$

Theorem (essentially Wagner)

TFAE:

$$\bullet$$
 $b \downarrow_A^{\text{bu}} c$

Autf(M/A) is the group generated by

$$\bigcup \{\operatorname{Aut}(\mathbb{M}/M) : A \subseteq M \models T\}.$$

$$b \equiv^{\mathsf{L}}_{A} b' \text{ iff } b' \in \mathsf{Autf}(\mathbb{M}/A) \cdot b.$$

Theorem (essentially Wagner)

TFAE:

- \bullet $b \bigcup_{A}^{bu} c$
- Autf(\mathbb{M}/A) is generated by Autf(\mathbb{M}/Ab) \cup Autf(\mathbb{M}/Ac).

Autf(M/A) is the group generated by

$$\bigcup \{\operatorname{Aut}(\mathbb{M}/M) : A \subseteq M \models T\}.$$

$$b \equiv^{\mathsf{L}}_{A} b' \text{ iff } b' \in \mathsf{Autf}(\mathbb{M}/A) \cdot b.$$

Theorem (essentially Wagner)

TFAE:

- \bullet $b \downarrow_{\Lambda}^{\text{bu}} c$
- Autf(\mathbb{M}/A) is generated by Autf(\mathbb{M}/Ab) \cup Autf(\mathbb{M}/Ac).
- (Walking) For any $b' \equiv_A^L b$, we have the configuration

$$b_0 \equiv_{Ac_1}^{\mathsf{L}} b_2 \equiv_{Ac_3}^{\mathsf{L}} b_4 \equiv_{Ac_5}^{\mathsf{L}} \cdots b_{n-2} \equiv_{Ac_{n-1}}^{\mathsf{L}} b_n$$

$$c_1 \equiv^{\mathsf{L}}_{Ab_2} c_3 \equiv^{\mathsf{L}}_{Ab_4} c_5 \equiv^{\mathsf{L}}_{Ab_6} \cdots c_{n-1}$$

where $b_0 = b$, $c_1 = c$, and $b_n = b'$.

What are total \bigcup_{bu} -Morley sequences? II

Canonical witnessing configuration: $I \approx_A J$ if and only if we have

where $I_0 = I$, $J_n = J$, and $I_i + J_{i+1}$ and $I_{i+2} + J_{i+1}$ are A-indiscernible.

What are total ∪bu-Morley sequences? II

Canonical witnessing configuration: $I \approx_A J$ if and only if we have

where $I_0 = I$, $J_n = J$, and $I_i + J_{i+1}$ and $I_{i+2} + J_{i+1}$ are A-indiscernible.

Theorem (H.)

 $(b_i)_{i<\omega}$ is a total \bigcup_{b^u} -Morley sequence over A iff it is based on $bdd^u(A)$ (i.e. $I \equiv_A^L b_{<\omega} \Leftrightarrow I \approx_A b_{<\omega}$).

Note: $I \equiv_{\mathsf{bdd}^{\mathsf{u}}(A)} J$ iff $I \equiv_A^{\mathsf{L}} J$.

There is a 'chain condition': If $(b_i)_{i<\omega}$ is a $\bigcup_{b=0}^{bu}$ -Morley sequence over A that is Ac-indiscernible, then $c\bigcup_{a=0}^{bu}b_0$.

There is a 'chain condition': If $(b_i)_{i<\omega}$ is a $\bigcup_{b=0}^{bu}$ -Morley sequence over A that is Ac-indiscernible, then $c \bigcup_{a=0}^{bu} b_0$.

Corollary (H.)

$$\uparrow_{\mathsf{q}} \Rightarrow \uparrow_{\mathsf{pn}}$$

There is a 'chain condition': If $(b_i)_{i<\omega}$ is a $\bigcup_{b=0}^{b}$ -Morley sequence over A that is Ac-indiscernible, then $c\bigcup_{A=0}^{b} b_0$.

Corollary (H.)

$$\downarrow^d \Rightarrow \downarrow^{bu}$$

Proof.

Suppose $c \perp_A^d b$.

There is a 'chain condition': If $(b_i)_{i<\omega}$ is a $\bigcup_{b=0}^{b}$ -Morley sequence over A that is Ac-indiscernible, then $c \bigcup_{A=0}^{b} b_0$.

Corollary (H.)

$$\downarrow^d \Rightarrow \downarrow^{bu}$$

Proof.

Suppose $c \downarrow_A^d b$. Find a \downarrow_b^{bu} -Morley sequence $b_{<\omega}$ over A with $b_0 = b$.

There is a 'chain condition': If $(b_i)_{i<\omega}$ is a $\bigcup_{j=0}^{bu}$ -Morley sequence over A that is Ac-indiscernible, then $c\bigcup_{j=0}^{bu}b_0$.

Corollary (H.)

$$\downarrow^d \Rightarrow \downarrow^{bu}$$

Proof.

Suppose $c \downarrow_A^d b$. Find a \downarrow_B^{bu} -Morley sequence $b_{<\omega}$ over A with $b_0 = b$. Since $c \downarrow_A^d b$, we may assume that $b_{<\omega}$ is Ac-indiscernible.

There is a 'chain condition': If $(b_i)_{i<\omega}$ is a $\bigcup_{j=0}^{bu}$ -Morley sequence over A that is Ac-indiscernible, then $c \bigcup_{j=0}^{bu} b_0$.

Corollary (H.)

$$\downarrow^d \Rightarrow \downarrow^{bu}$$

Proof.

Suppose $c \, \bigcup_A^d b$. Find a \bigcup_{b}^{bu} -Morley sequence $b_{<\omega}$ over A with $b_0 = b$. Since $c \, \bigcup_A^d b$, we may assume that $b_{<\omega}$ is Ac-indiscernible. By the chain condition, $c \, \bigcup_A^{bu} b$.

There is a 'chain condition': If $(b_i)_{i<\omega}$ is a $\bigcup_{j=0}^{bu}$ -Morley sequence over A that is Ac-indiscernible, then $c\bigcup_{j=0}^{bu}b_0$.

Corollary (H.)

$$\downarrow^d \Rightarrow \downarrow^{bu}$$

Proof.

Suppose $c \, \bigcup_A^d b$. Find a $\bigcup_{b^u}^{b^u}$ -Morley sequence $b_{<\omega}$ over A with $b_0 = b$. Since $c \, \bigcup_A^d b$, we may assume that $b_{<\omega}$ is Ac-indiscernible. By the chain condition, $c \, \bigcup_A^{b^u} b$.

Corollary of Corollary

In a simple theory, $(b_i)_{i<\omega}$ is a Morley sequence over A if and only if it is a total $\bigcup_{i=0}^{bu}$ -Morley sequence over A.