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Discrete model theory
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A taste of model theory

Suppose we have families Dn of subsets of Rn satisfying:

Each Dn is closed under Boolean combinations. (Contains ∅ and Rn.)

Dn’s are closed under images and preimages under polynomial maps
(e.g. (x , y) 7→ (x + y , x − 2y , xy)).

How tame can (Dn)n∈N be if certain sets are present?

If {(x , ex) : x ∈ R} ∈ D2, then it can be that everything is a finite
union of connected smooth manifolds.

If {(x , cos(x)) : x ∈ R} ∈ D2, then we have every Borel subset of
each Rn.
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Discrete first-order logic

A language is a collection of constant, function, and relation symbols.

Example: 0,1, +, ·, < (language of ordered semirings)

A structure is a set with interpretations of the symbols.

Example: N, Z, Q, and R.
Different structures can satisfy different sentences in first-order logic:

N Z Q R
∀x∀y(x < y ∨ x = y ∨ y < x) ‘< is linear’

∃x(x + 1 = 0) ‘−1 exists’
∀x(x ̸= 0 → ∃y(x · y = 1)) ‘Division is possible’

∀x(0 < x → ∃y(x = y · y)) ‘Positive #’s have
√

’

The theory of a structure is the set of all sentences it satisfies.
Different structures can have the same theory. These are different
models of the theory.
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Definable sets I

Given a structure M, a subset of Mn is definable if there is a formula
specifying it.

Easy example: The set of pairs of twin primes (p, p + 2) ∈ N2 is
definable by

φ(x , y) ≡ ψprime(x) ∧ ψprime(y) ∧ y = x + (1 + 1)

where ψprime(p) ≡ 1 < p ∧ ∀u∀v(u · v = p → u = 1 ∨ u = p).

Hard example: The set of pairs (n, b) ∈ N2 such that n is a
palindrome in base b is definable in N by some enormous formula only
involving 0, 1, +, ·, <.
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Definable sets II

Definable sets in (N, 0, 1,+, ·, <) are very complicated (intimately
related to computability theory).

Definable sets in (R, 0, 1,+, ·, <) are fairly simple: Semi-algebraic sets
(Tarski–Seidenberg).

When the family of definable sets in a structure/theory is
combinatorially tame, there is often an abstract notion of
independence with associated notion of dimension (generalizing linear
dimension in vector spaces and transcendence degree in fields).

Various combinatorial dividing lines are studied by model theorists.
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The map of combinatorial tameness

Stable

Algebraically closed fields
Differentially closed fields

Vector spaces
Modules

Free groups∗

Curve graphs∗∗

∗Sela (2013) ∗∗Disarlo, Koberda, de la Nuez González (2020)
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The map of combinatorial tameness

Long term project:
Find more dividing

lines here.
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Some applications and connections

NIP:

Application of Pila–Wilkie theorem to the André–Oort conjecture
(Pila–Zannier 2008, Pila 2011)

PAC learnability, finite Vapnik–Chervonenkis dimension (Laskowski
1992), Sauer–Shelah lemma (1972)

Stability:

Mordell–Lang conjecture for function fields (Hrushovski 1996)

Online learnability, finite Littlestone dimension (Chase–Freitag 2019)
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Continuous model theory
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Combinatorial tameness in continuous model theory

Conant, forkinganddividing.com

Stable

Hilbert spaces
Probability algebras

Alg. closed valued fields2

(Qp,+, |x − y |p)3
R-trees1,3

Lp-lattices (p <∞)
Some operator systems
Some operator spaces

1Henson and Carlisle (2018) 2Ben Yaacov (2008, 2009) 3H. (2020, 2023)

O-minimal:
(R,+, ·, <, exp)

(Q,+, <)

Other:
(N,+, <)

p-adic numbers
Alg. closed valued fields

PAC fields
Pseudo-finite fields
The random graph
The Urysohn space

Vector spaces
with bilinear forms

ZFC
(N,+, ·, <)
(Q,+, ·, <)

(R,+, ·, <, cos)
Boolean algebras
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Continuous first-order logic I

R-valued logic is nearly 100 years old, but model-theory-focused formalism
is fairly new (and heavy).

A language is a collection of constant, function, and relation symbols.

Each function and relation symbol comes with a designated arity and
modulus of uniform continuity.

Each relation symbol (including the metric) is assigned a bounded
interval of possible values. (Could also work with extended metric.)

Structures are complete metric spaces with interpretations of the
symbols obeying the specified moduli and bounds.

Terms and atomic formulas work as they do in discrete logic.

Connectives are all continuous functions Rn → R. Quantifiers are
inf and sup.

Sometimes we also close the collection of formulas under uniformly
convergent limits.
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Continuous first-order logic II

R-valued sentences measure aspects of structures.

Example: Radius is infx supy d(x , y).

‘How cold is it?’ not ‘Is it cold or not?’

(In)equalities of sentences are called conditions:

d is {0, 1}-valued iff

sup
xy

min{d(x , y), |d(x , y)− 1|} = 0

d is an intrinsic metric iff

sup
xz

inf
y
max{|d(x , y)− 1

2d(x , z)|, |d(y , z)−
1
2d(x , z)|} = 0

The theory of a structure is the set of all conditions it satisfies.
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Definable sets I

R-valued formulas are the ‘correct’ generalization of discrete formulas,
but sometimes it’s useful to have something you can treat more
‘discretely.’

A closed set D ⊆ M is definable if the point-set distance

d(x ,D) = inf
y∈D

d(x , y)

is a formula.

Example: In Hilbert spaces, B≤r (a) is definable by

φ(x) = max{∥x − a∥ − r , 0}.

Definable sets are characterized by admitting relative quantification:
For any formula φ(x , y), there is a formula equivalent to
infy∈D φ(x , y).
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Definable sets II

Definable sets are nice to have but sometimes hard to find.

Proposition

If D and E are definable sets, then D ∪ E is a definable set.

Proof.

d(x ,D ∪ E ) = min{d(x ,D), d(x ,E )}.

Complement? Typically not even closed.

Intersection? Unclear: d(x ,D ∩ E ) ̸= max{d(x ,D), d(x ,E )}.
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Dictionaric theories

Continuous theories are easier to work with when they have ‘enough’
definable sets.

Definition

A theory is dictionaric if for every formula φ(x̄) (with parameters) and
every r < s, there is a definable set D such that {φ ≤ r} ⊆ D ⊆ {φ < s}.

All discrete theories are dictionaric when considered as continuous theories.

Theorem (H.)

ω-stable theories and randomizations of arbitrary (discrete or continuous)
theories are dictionaric.

Proposition (H.)

If T is dictionaric, then for any definable sets D and E , there are definable
F ‘arbitrarily close’ to E such that D ∩ F is definable.
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What can go wrong?
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Example: {P ,Q}-structure with universe [0, 1]2

P
0 1

Q

0

1

d = 1

d = 1

d < 1

P((x , y)) = x
Q((x , y)) = y

d(z ,w) = |Q(z)− Q(w)| if P(z) = P(w).
d(z ,w) = 1 otherwise.
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Definable sets in the example

Any formula φ(z) (without parameters)
is equivalent to f (P(z),Q(z)) for some
continuous f : [0, 1]2 → R. (Continuity
is with regards to the standard compact
topology.)

A closed set F ⊆ [0, 1]2 is definable iff
F is in the interior of F<ε for every
ε > 0. Specific case of a general
characterization of definable sets
(interplay between two topologies).

D and E are definable but D ∩ E isn’t.

So what semilattices can the definable
sets be?
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Second example: Finitely many definable sets

M−1 1

0

1

(0, 12)

M is this subset of
[−1, 1]× [0, 1].

P and Q are unary
predicates.

d(x , y) = |Q(x)− Q(y)| if
P(x) = P(y) and is 1
otherwise.

Definable sets are
characterized similarly to
before (need to ‘grow
sideways’).

Has precisely 22 definable
sets.
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Which finite semilattices can we have?

Theorem (H.)

Every finite semilattice is the semilattice of definable sets (in one variable)
for some complete superstable theory.

Proof sketch.

Construct a configuration that can act as an AND gate. Glue these
together to build a ‘logic circuit’ that directly codes the diagram of a given
finite semilattice.

Structure with N5 as its semilattice of definable sets.
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Thank you
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The map of combinatorial tameness

Conant, forkinganddividing.com

Stable

Algebraically closed fields
Differentially closed fields

Vector spaces
Modules

Free groups∗

Curve graphs∗∗

∗Sela ∗∗Disarlo, Koberda, de la Nuez González

?
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Stable

O-minimal:
(R,+, ·, <)

(R,+, ·, <, exp)
(Q,+, <)

Other:
(N,+, <)

p-adic numbers
Alg. closed valued fields

Dependent
(NIP)

PAC fields
Pseudo-finite fields
The random graph
The Urysohn space

Vector spaces
with bilinear forms

Simple+
(NSOP)

Dragons

ZFC
(N,+, ·, <)
(Q,+, ·, <)

(R,+, ·, <, cos)
Boolean algebras

?
James Hanson (UMD) Tameness and definability January 25, 2024 22 / 20



The map of combinatorial tameness

Conant, forkinganddividing.com

Algebraically closed fields
Differentially closed fields

Vector spaces
Modules

Free groups∗

Curve graphs∗∗

∗Sela ∗∗Disarlo, Koberda, de la Nuez González
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The map of combinatorial tameness

Conant, forkinganddividing.com

Stable

Dependent
(NIP)

Simple+
(NSOP)

DragonsNTP2
Structure theory generalizing

NIP and simplicity
(Chernikov, Kaplan)

NSOP1
Structure theory generalizing simplicity

(Ramsey, Kaplan)

?
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The map of combinatorial tameness

Conant, forkinganddividing.com

Antichain tree
property

(Ahn, Kim)

Bizarre tree
property

(Ramsey, Kruckman)

Comb tree
property

(Mutchnik) ?
NATP?

NBTP?

NCTP?

James Hanson (UMD) Tameness and definability January 25, 2024 22 / 20
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Antichain tree
property

(Ahn, Kim)

Bizarre tree
property

(Ramsey, Kruckman)

Comb tree
property

(Mutchnik)
Characterized by NTP2/NSOP1-like
independence phenomenon (H.)

Implies NTP2/NSOP1-like
local character (H.)

?
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Some applications and connections

NIP:

IAS Special Year on Arithmetic Geometry, Hodge Theory, and
o-minimality (2025-26)

Application of Pila–Wilkie theorem to the André–Oort conjecture
(Pila–Zannier 2008, Pila 2011)

PAC learnability, finite Vapnik–Chervonenkis dimension (Laskowski
1992), Sauer–Shelah lemma (1972)

Rosenthal compacta (Bourgain–Fremlin–Talagrand 1978, Simon
2014)

Stability:

Mordell–Lang conjecture for function fields (Hrushovski 1996)

Online learnability, finite Littlestone dimension (Chase–Freitag 2019)

Connections with geometric group theory (Sela 2001-2013,
Disarlo–Koberda–de la Nuez González 2020)

General:

Ax–Grothendieck (1966/8), Ax–Kochen (1965)
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Continuous model theory

Real-valued logic goes back to the early 20th century:

Various precursors (such as ultraproduct constructions in analysis)
suggest that we should be able to do ‘model theory of metric
structures.’ Chapter in Gromov’s Metric Structures for Riemannian
and Non-Riemannian Spaces (1999):

Took a long time for stability theory and neo-stability theory to be
applied.

James Hanson (UMD) Tameness and definability January 25, 2024 24 / 20



Continuous model theory

Real-valued logic goes back to the early 20th century:

Various precursors (such as ultraproduct constructions in analysis)
suggest that we should be able to do ‘model theory of metric
structures.’ Chapter in Gromov’s Metric Structures for Riemannian
and Non-Riemannian Spaces (1999):

Took a long time for stability theory and neo-stability theory to be
applied.

James Hanson (UMD) Tameness and definability January 25, 2024 24 / 20



Continuous model theory

Real-valued logic goes back to the early 20th century:

Various precursors (such as ultraproduct constructions in analysis)
suggest that we should be able to do ‘model theory of metric
structures.’ Chapter in Gromov’s Metric Structures for Riemannian
and Non-Riemannian Spaces (1999):

Took a long time for stability theory and neo-stability theory to be
applied.

James Hanson (UMD) Tameness and definability January 25, 2024 24 / 20



Characterization of dictionaricity

Theorem (H.)

The following are equivalent:

1 Sn(T ) is dictionaric.

2 Definable sets separate disjoint closed subsets of Sn(T ).

3 For every disjoint closed F ,G ⊆ Sn(T ), there is a definable set D
such that either F ⊆ D and D ∩ G = ∅ or G ⊆ D and D ∩ F = ∅.

4 Sn(T ) has a network of definable sets (i.e. for every p ∈ U ⊆ Sn(T ),
there is a definable set D such that p ∈ D ⊆ U).

5 For every ε > 0, Sn(T ) has a basis of open sets U satisfying
clU ⊆ U<ε.

2

F GD E

34

U
p

D

5

UclUU<ε

X
p q
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such that either F ⊆ D and D ∩ G = ∅ or G ⊆ D and D ∩ F = ∅.

4 Sn(T ) has a network of definable sets (i.e. for every p ∈ U ⊆ Sn(T ),
there is a definable set D such that p ∈ D ⊆ U).

5 For every ε > 0, Sn(T ) has a basis of open sets U satisfying
clU ⊆ U<ε.
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‘Hausdorff’ is not quite enough I

D0

D1

p

q

Almost any two points are separated by disjoint definable neighborhoods.
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‘Hausdorff’ is not quite enough II

U
p

There is no non-empty definable D with D ⊆ U.
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