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Continuous logic

Metric structure example: (R,+, d), where d(x , y) = min(|x − y |, 1).
Metric is bounded and complete. + is uniformly continuous.

(R,+) is abelian:
sup
xy

d(x + y , y + x) = 0

Division by 2:
sup
x

inf
y
d(x , y + y) = 0

Elementary extensions: R⊕Q⊕κ, where Q⊕κ has {0, 1}-metric.
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Type space

The type of b̄ over A is specified by the values φ(b̄, ā) for all formulas
φ and ā ∈ A.

Set of n-types Sn(A) is a compact Hausdorff space.

There is a metric:

d(p, q) = inf{d(ā, b̄) : ā |= p, b̄ |= q}

(Sn(T ), τ, d) is a topometric space: d refines τ and
{(p, q) : d(p, q) ≤ r} is closed in Sn(T )2 for all r .

For any closed F and r > 0, F≤r = {p : d(p,F ) ≤ r} is closed.

d is also open: For any open U and r > 0, U<r is open.

(H.) Any compact topometric space (X , τ, ρ) with open metric ρ is
isomorphic to S1(T ) for some strictly stable T .
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φ and ā ∈ A.

Set of n-types Sn(A) is a compact Hausdorff space.

There is a metric:
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S1(R⊕Q)
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Unique non-algebraic type
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Definable sets

A closed set D ⊆ Sn(T ) is definable iff d(x ,D) is continuous.

Example: The set {0} ⊂ R is definable in (R,+, d) without
parameters by

d(x , {0}) = d(x , x + x).

Equivalent to saying that no sequence (or net) sneaks up on D (i.e.
lim pi = q ∈ D but lim inf d(pi ,D) > 0).

Equivalent to admitting relative quantification (i.e. supx∈D).

D is definable iff D<r is open for every r > 0.

If T is ω-stable, then Sn(A) always has a basis of definable
neighborhoods. (T is dictionaric.)
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Many definable sets: S1(M), M = (R≥0, cos, sin, d)
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Th(M) is ω-stable.

Metric on non-algebraic types is (roughly) path metric.
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Few definable sets: S1(N), N = (N, succ, cos, sin, d)

0
1

2

3
4

5

6 7

8

9
10

11

12
13

14

15

16
17

18

19 20

21

2223

24

25

Th(N) is superstable.

Metric on non-algebraic types is discrete. Every definable set is either
finite and algebraic or cofinite and co-algebraic.
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Many but not enough I

x
0 1

y

0

1

d = 1

d = 1

d < 1

d((x0, y0), (x1, y1)) = 1 if y0 ̸= y1.
d((x0, y), (x1, y)) = |x0 − x1|.
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Many but not enough II

Closed F ,
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Many but not enough II

Closed F , with F< 1
4 .
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Many but not enough II

Sneak!

Sneak!

Closed F , with F< 1
4 .

Not definable.
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Many but not enough III

Definable set D, with D< 1
4 .
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Many but not enough IV

D0

D1

p

q

Almost any two points are separated by disjoint definable neighborhoods.
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Many but not enough V

U
p

There is no non-empty definable D with D ⊆ U.
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The semilattice of definable sets

James Hanson (UMD) How bad could it be? Oct. 25, 2020 13 / 25



Unions

Proposition

If D and E are definable sets, then D ∨ E is a definable set.

Proof.

d(p,D ∨ E ) = min(d(p,D), d(p,E )).

Given a type space Sn(T ), the collection of definable subsets of it forms a
bounded upper semilattice (∅ and Sn(T ) are always definable) under
unions.
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Where have all the algebraic operations gone?

Complement?

Typically not even closed.

Intersection? d(p,D ∧ E ) ̸= max(d(p,D), d(p,E )).

Example

D ∧ E need not be definable for D and E definable.

In square type space:

∧ =
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Prototypical example: Structure

M−1 1

0

1

(0, 12)

M is this subset of
[−1, 1]× [0, 1].

P and Q are unary
predicates.

d(x , y) = |Q(x)− Q(y)| if
P(x) = P(y) and is 1
otherwise.

Let T = Th(M).
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Prototypical example: Type space

S1(T ) is homeomorphic to
this subset of [−1, 1]× [0, 1].

Metric is the same as on M.

Has precisely 22 definable
sets.

S1(T )
−1 1

0

1

P

Q
tp(0, 12)

James Hanson (UMD) How bad could it be? Oct. 25, 2020 17 / 25



Prototypical example: Type space

S1(T ) is homeomorphic to
this subset of [−1, 1]× [0, 1].

Metric is the same as on M.

Has precisely 22 definable
sets.

S1(T )
−1 1

0

1

P

Q
tp(0, 12)

tp(0, 12)
d(p, q) = |Q(p)− Q(q)|

d = 1

James Hanson (UMD) How bad could it be? Oct. 25, 2020 17 / 25



Prototypical example: Type space

S1(T ) is homeomorphic to
this subset of [−1, 1]× [0, 1].

Metric is the same as on M.

Has precisely 22 definable
sets.

S1(T )
−1 1

0

1

P

Q
tp(0, 12)

tp(0, 12)
d(p, q) = |Q(p)− Q(q)|

d = 1

James Hanson (UMD) How bad could it be? Oct. 25, 2020 17 / 25



Prototypical example: Type space

S1(T ) is homeomorphic to
this subset of [−1, 1]× [0, 1].

Metric is the same as on M.

Has precisely 22 definable
sets.

S1(T )
−1 1

0

1

P

Q
tp(0, 12)

tp(0, 12)
d(p, q) = |Q(p)− Q(q)|

d = 1

James Hanson (UMD) How bad could it be? Oct. 25, 2020 17 / 25



Prototypical example: Type space

S1(T ) is homeomorphic to
this subset of [−1, 1]× [0, 1].

Metric is the same as on M.

Has precisely 22 definable
sets.

S1(T )
−1 1

0

1

P

Q
tp(0, 12)

tp(0, 12)
d(p, q) = |Q(p)− Q(q)|

d = 1

James Hanson (UMD) How bad could it be? Oct. 25, 2020 17 / 25



Prototypical example: Type space

S1(T ) is homeomorphic to
this subset of [−1, 1]× [0, 1].

Metric is the same as on M.

Has precisely 22 definable
sets.

S1(T )
−1 1

0

1

P

Q
tp(0, 12)

tp(0, 12)
d(p, q) = |Q(p)− Q(q)|

d = 1

James Hanson (UMD) How bad could it be? Oct. 25, 2020 17 / 25



Which finite semilattices can we have?

The poset of definable subsets of a type space is always a bounded
upper semilattice.

Finite semilattices are automatically complete and therefore lattices if
they have least elements, so really the question is which lattices?

For a consistent T , S1(T ) always has at least 2 definable sets.
Inconsistent T has 1 (pedantically).

Proposition (H.)

Every finite lattice is the lattice of definable sets of S1(T ) for some
complete superstable theory T .

In other words, maximally bad. Let’s prove this.
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The construction

Take your favorite finite lattice with more than one element

and flip it
upside down. Also cut the bottom off (point representing ∅ would be
redundant).

E C

F

B

A
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Superstability

When you interpret a type space X built this way as a structure, the
resulting theory’s S1(T ) is X . (X is autological.)

Resulting theory is weakly minimal with trivial geometry, so
superstable.

Question

Which type spaces are autological? Is the theory of an autological type
space always weakly minimal with trivial geometry?
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To infinity and not very much further
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Which infinite semilattices can we have?

General principles tell us that a type space (in a countable language)
must have either ≤ ℵ0 or 2ℵ0 definable sets. (Complete metric space.)

There is a way to ‘compactify’ infinite but locally finite graphs of the
kind we built here to get the associated lattice together with a new
bottom element, but not every countable lattice can be expressed in
this way (e.g. ω + 2).
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Thank you

James Hanson (UMD) How bad could it be? Oct. 25, 2020 26 / 25
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