How bad could it be?
 The semilattice of definable sets in continuous logic

James Hanson
University of Maryland, College Park

October 25, 2020
University of Maryland Logic Seminar

Continuous logic

\square Metric structure example: $(\mathbb{R},+, d)$, where $d(x, y)=\min (|x-y|, 1)$.

- Metric is bounded and complete. + is uniformly continuous.

Continuous logic

- Metric structure example: $(\mathbb{R},+, d)$, where $d(x, y)=\min (|x-y|, 1)$.
- Metric is bounded and complete. + is uniformly continuous.
- $(\mathbb{R},+)$ is abelian:

$$
\sup _{x y} d(x+y, y+x)=0
$$

Continuous logic

- Metric structure example: $(\mathbb{R},+, d)$, where $d(x, y)=\min (|x-y|, 1)$.
- Metric is bounded and complete. + is uniformly continuous.
- $(\mathbb{R},+)$ is abelian:

$$
\sup _{x y} d(x+y, y+x)=0
$$

- Division by 2 :

$$
\sup _{x} \inf _{y} d(x, y+y)=0
$$

Continuous logic

- Metric structure example: $(\mathbb{R},+, d)$, where $d(x, y)=\min (|x-y|, 1)$.
- Metric is bounded and complete. + is uniformly continuous.
$\square(\mathbb{R},+)$ is abelian:

$$
\sup _{x y} d(x+y, y+x)=0
$$

- Division by 2 :

$$
\sup _{x} \inf _{y} d(x, y+y)=0
$$

■ Elementary extensions: $\mathbb{R} \oplus \mathbb{Q}^{\oplus \kappa}$, where $\mathbb{Q}^{\oplus \kappa}$ has $\{0,1\}$-metric.

Type space

- The type of \bar{b} over A is specified by the values $\varphi(\bar{b}, \bar{a})$ for all formulas φ and $\bar{a} \in A$.

Type space

- The type of \bar{b} over A is specified by the values $\varphi(\bar{b}, \bar{a})$ for all formulas φ and $\bar{a} \in A$.
- Set of n-types $S_{n}(A)$ is a compact Hausdorff space.

Type space

- The type of \bar{b} over A is specified by the values $\varphi(\bar{b}, \bar{a})$ for all formulas φ and $\bar{a} \in A$.
- Set of n-types $S_{n}(A)$ is a compact Hausdorff space.
- There is a metric:

$$
d(p, q)=\inf \{d(\bar{a}, \bar{b}): \bar{a} \models p, \bar{b} \models q\}
$$

Type space

- The type of \bar{b} over A is specified by the values $\varphi(\bar{b}, \bar{a})$ for all formulas φ and $\bar{a} \in A$.
- Set of n-types $S_{n}(A)$ is a compact Hausdorff space.
- There is a metric:

$$
d(p, q)=\inf \{d(\bar{a}, \bar{b}): \bar{a} \models p, \bar{b} \models q\}
$$

- $\left(S_{n}(T), \tau, d\right)$ is a topometric space:

Type space

- The type of \bar{b} over A is specified by the values $\varphi(\bar{b}, \bar{a})$ for all formulas φ and $\bar{a} \in A$.
- Set of n-types $S_{n}(A)$ is a compact Hausdorff space.
- There is a metric:

$$
d(p, q)=\inf \{d(\bar{a}, \bar{b}): \bar{a} \models p, \bar{b} \models q\}
$$

$\square\left(S_{n}(T), \tau, d\right)$ is a topometric space: d refines τ

Type space

- The type of \bar{b} over A is specified by the values $\varphi(\bar{b}, \bar{a})$ for all formulas φ and $\bar{a} \in A$.
- Set of n-types $S_{n}(A)$ is a compact Hausdorff space.
- There is a metric:

$$
d(p, q)=\inf \{d(\bar{a}, \bar{b}): \bar{a} \models p, \bar{b} \models q\}
$$

$\square\left(S_{n}(T), \tau, d\right)$ is a topometric space: d refines τ and $\{(p, q): d(p, q) \leq r\}$ is closed in $S_{n}(T)^{2}$ for all r.

Type space

- The type of \bar{b} over A is specified by the values $\varphi(\bar{b}, \bar{a})$ for all formulas φ and $\bar{a} \in A$.
- Set of n-types $S_{n}(A)$ is a compact Hausdorff space.
- There is a metric:

$$
d(p, q)=\inf \{d(\bar{a}, \bar{b}): \bar{a} \models p, \bar{b} \models q\}
$$

$\square\left(S_{n}(T), \tau, d\right)$ is a topometric space: d refines τ and $\{(p, q): d(p, q) \leq r\}$ is closed in $S_{n}(T)^{2}$ for all r.

- For any closed F and $r>0, F^{\leq r}=\{p: d(p, F) \leq r\}$ is closed.

Type space

- The type of \bar{b} over A is specified by the values $\varphi(\bar{b}, \bar{a})$ for all formulas φ and $\bar{a} \in A$.
- Set of n-types $S_{n}(A)$ is a compact Hausdorff space.
- There is a metric:

$$
d(p, q)=\inf \{d(\bar{a}, \bar{b}): \bar{a} \models p, \bar{b} \models q\}
$$

$\square\left(S_{n}(T), \tau, d\right)$ is a topometric space: d refines τ and $\{(p, q): d(p, q) \leq r\}$ is closed in $S_{n}(T)^{2}$ for all r.

- For any closed F and $r>0, F^{\leq r}=\{p: d(p, F) \leq r\}$ is closed.
- d is also open: For any open U and $r>0, U^{<r}$ is open.

Type space

- The type of \bar{b} over A is specified by the values $\varphi(\bar{b}, \bar{a})$ for all formulas φ and $\bar{a} \in A$.
- Set of n-types $S_{n}(A)$ is a compact Hausdorff space.
- There is a metric:

$$
d(p, q)=\inf \{d(\bar{a}, \bar{b}): \bar{a} \models p, \bar{b} \models q\}
$$

$\square\left(S_{n}(T), \tau, d\right)$ is a topometric space: d refines τ and $\{(p, q): d(p, q) \leq r\}$ is closed in $S_{n}(T)^{2}$ for all r.

- For any closed F and $r>0, F^{\leq r}=\{p: d(p, F) \leq r\}$ is closed.
- d is also open: For any open U and $r>0, U^{<r}$ is open.
\square (H.) Any compact topometric space (X, τ, ρ) with open metric ρ is isomorphic to $S_{1}(T)$ for some strictly stable T.

$S_{1}(\mathbb{R} \oplus \mathbb{Q})$

Unique non-algebraic type

Definable sets

- A closed set $D \subseteq S_{n}(T)$ is definable iff $d(x, D)$ is continuous.

Definable sets

- A closed set $D \subseteq S_{n}(T)$ is definable iff $d(x, D)$ is continuous.
- Example: The set $\{0\} \subset \mathbb{R}$ is definable in $(\mathbb{R},+, d)$ without parameters by

$$
d(x,\{0\})=d(x, x+x)
$$

Definable sets

- A closed set $D \subseteq S_{n}(T)$ is definable iff $d(x, D)$ is continuous.
- Example: The set $\{0\} \subset \mathbb{R}$ is definable in $(\mathbb{R},+, d)$ without parameters by

$$
d(x,\{0\})=d(x, x+x)
$$

- Equivalent to saying that no sequence (or net) sneaks up on D (i.e. $\lim p_{i}=q \in D$ but $\left.\lim \inf d\left(p_{i}, D\right)>0\right)$.

Definable sets

- A closed set $D \subseteq S_{n}(T)$ is definable iff $d(x, D)$ is continuous.
- Example: The set $\{0\} \subset \mathbb{R}$ is definable in $(\mathbb{R},+, d)$ without parameters by

$$
d(x,\{0\})=d(x, x+x)
$$

- Equivalent to saying that no sequence (or net) sneaks up on D (i.e. $\lim p_{i}=q \in D$ but $\left.\lim \inf d\left(p_{i}, D\right)>0\right)$.
- Equivalent to admitting relative quantification (i.e. $\sup _{x \in D}$).

Definable sets

- A closed set $D \subseteq S_{n}(T)$ is definable iff $d(x, D)$ is continuous.
- Example: The set $\{0\} \subset \mathbb{R}$ is definable in $(\mathbb{R},+, d)$ without parameters by

$$
d(x,\{0\})=d(x, x+x)
$$

- Equivalent to saying that no sequence (or net) sneaks up on D (i.e. $\lim p_{i}=q \in D$ but $\left.\lim \inf d\left(p_{i}, D\right)>0\right)$.
- Equivalent to admitting relative quantification (i.e. $\sup _{x \in D}$).
- D is definable iff $D^{<r}$ is open for every $r>0$.

Definable sets

- A closed set $D \subseteq S_{n}(T)$ is definable iff $d(x, D)$ is continuous.
- Example: The set $\{0\} \subset \mathbb{R}$ is definable in $(\mathbb{R},+, d)$ without parameters by

$$
d(x,\{0\})=d(x, x+x)
$$

- Equivalent to saying that no sequence (or net) sneaks up on D (i.e. $\lim p_{i}=q \in D$ but $\left.\liminf d\left(p_{i}, D\right)>0\right)$.
- Equivalent to admitting relative quantification (i.e. $\sup _{x \in D}$).
- D is definable iff $D^{<r}$ is open for every $r>0$.

■ If T is ω-stable, then $S_{n}(A)$ always has a basis of definable neighborhoods. (T is dictionaric.)

Many definable sets: $S_{1}(M), M=\left(\mathbb{R}_{\geq 0}, \cos , \sin , d\right)$

Many definable sets: $S_{1}(M), M=\left(\mathbb{R}_{\geq 0}, \cos , \sin , d\right)$

■ $\operatorname{Th}(M)$ is ω-stable.

Many definable sets: $S_{1}(M), M=\left(\mathbb{R}_{\geq 0}, \cos , \sin , d\right)$

- $\operatorname{Th}(M)$ is ω-stable.
- Metric on non-algebraic types is (roughly) path metric.

Few definable sets: $S_{1}(N), N=(\mathbb{N}$, succ, $\cos , \sin , d)$

Few definable sets: $S_{1}(N), N=(\mathbb{N}$, succ, $\cos , \sin , d)$

$\square \operatorname{Th}(N)$ is superstable.

Few definable sets: $S_{1}(N), N=(\mathbb{N}$, succ, $\cos , \sin , d)$

- $\operatorname{Th}(N)$ is superstable.
- Metric on non-algebraic types is discrete.

Few definable sets: $S_{1}(N), N=(\mathbb{N}$, succ, $\cos , \sin , d)$

- $\operatorname{Th}(N)$ is superstable.
- Metric on non-algebraic types is discrete. Every definable set is either finite and algebraic or cofinite and co-algebraic.

Many but not enough I

Many but not enough II

Closed F,

Many but not enough II

Closed F, with $F^{<\frac{1}{4}}$.

Many but not enough II

Closed F, with $F^{<\frac{1}{4}}$.
Not definable.

Many but not enough III

Definable set D, with $D^{<\frac{1}{4}}$.

Many but not enough IV

Almost any two points are separated by disjoint definable neighborhoods.

Many but not enough V

There is no non-empty definable D with $D \subseteq U$.

The semilattice of definable sets

Unions

Proposition

If D and E are definable sets, then $D \vee E$ is a definable set.

Unions

Proposition

If D and E are definable sets, then $D \vee E$ is a definable set.

Proof.
 $d(p, D \vee E)=\min (d(p, D), d(p, E))$.

Unions

Proposition

If D and E are definable sets, then $D \vee E$ is a definable set.

Proof.

$d(p, D \vee E)=\min (d(p, D), d(p, E))$.
Given a type space $S_{n}(T)$, the collection of definable subsets of it forms a bounded upper semilattice (\varnothing and $S_{n}(T)$ are always definable) under unions.

Where have all the algebraic operations gone?

Complement?

Where have all the algebraic operations gone?

Complement? Typically not even closed.

Where have all the algebraic operations gone?

Complement? Typically not even closed.
Intersection?

Where have all the algebraic operations gone?

- Complement? Typically not even closed.
- Intersection? $d(p, D \wedge E) \neq \max (d(p, D), d(p, E))$.

Where have all the algebraic operations gone?

- Complement? Typically not even closed.
- Intersection? $d(p, D \wedge E) \neq \max (d(p, D), d(p, E))$.

Example

$D \wedge E$ need not be definable for D and E definable.

Where have all the algebraic operations gone?

- Complement? Typically not even closed.
- Intersection? $d(p, D \wedge E) \neq \max (d(p, D), d(p, E))$.

Example

$D \wedge E$ need not be definable for D and E definable.
In square type space:

Prototypical example: Structure

Prototypical example: Structure

Prototypical example: Structure

Prototypical example: Structure

Prototypical example: Type space

Prototypical example: Type space

- $S_{1}(T)$ is homeomorphic to this subset of $[-1,1] \times[0,1]$.
- Metric is the same as on M.

Prototypical example: Type space

- $S_{1}(T)$ is homeomorphic to this subset of $[-1,1] \times[0,1]$.
- Metric is the same as on M.
- Has precisely 22 definable sets.

Prototypical example: Type space

- $S_{1}(T)$ is homeomorphic to this subset of $[-1,1] \times[0,1]$.
- Metric is the same as on M.
- Has precisely 22 definable sets.

Prototypical example: Type space

- $S_{1}(T)$ is homeomorphic to this subset of $[-1,1] \times[0,1]$.
- Metric is the same as on M.
- Has precisely 22 definable sets.

Prototypical example: Type space

- $S_{1}(T)$ is homeomorphic to this subset of $[-1,1] \times[0,1]$.
- Metric is the same as on M.
- Has precisely 22 definable sets.

Which finite semilattices can we have?

The poset of definable subsets of a type space is always a bounded upper semilattice.

Which finite semilattices can we have?

- The poset of definable subsets of a type space is always a bounded upper semilattice.
- Finite semilattices are automatically complete and therefore lattices if they have least elements, so really the question is which lattices?
- For a consistent $T, S_{1}(T)$ always has at least 2 definable sets. Inconsistent T has 1 (pedantically).

Which finite semilattices can we have?

- The poset of definable subsets of a type space is always a bounded upper semilattice.
- Finite semilattices are automatically complete and therefore lattices if they have least elements, so really the question is which lattices?
- For a consistent $T, S_{1}(T)$ always has at least 2 definable sets. Inconsistent T has 1 (pedantically).

Proposition (H.)

Every finite lattice is the lattice of definable sets of $S_{1}(T)$ for some complete superstable theory T.

Which finite semilattices can we have?

- The poset of definable subsets of a type space is always a bounded upper semilattice.
- Finite semilattices are automatically complete and therefore lattices if they have least elements, so really the question is which lattices?
- For a consistent $T, S_{1}(T)$ always has at least 2 definable sets. Inconsistent T has 1 (pedantically).

Proposition (H.)

Every finite lattice is the lattice of definable sets of $S_{1}(T)$ for some complete superstable theory T.

In other words, maximally bad.

Which finite semilattices can we have?

- The poset of definable subsets of a type space is always a bounded upper semilattice.
- Finite semilattices are automatically complete and therefore lattices if they have least elements, so really the question is which lattices?
- For a consistent $T, S_{1}(T)$ always has at least 2 definable sets. Inconsistent T has 1 (pedantically).

Proposition (H.)

Every finite lattice is the lattice of definable sets of $S_{1}(T)$ for some complete superstable theory T.

In other words, maximally bad. Let's prove this.

Wires

Wires

Wires

Wires

Wires

Wires

Wires

$$
\xrightarrow[{d(r, s)=[r \neq s}]]{ } \quad q(x) \models \inf _{y}\left|d(x, y)-\frac{1}{2}\right|=0,1 /=\inf _{y}|d(x, y)-1|=0,
$$

Wires

Wires

Normal Metric Zone

All Distances Are 0 or 1 Zone

Wires

Normal Metric Zone

All Distances Are 0 or 1 Zone

Wires

Normal Metric Zone

All Distances Are 0 or 1 Zone

Wires

Wires

Wires

A diode

A diode

I Open Set U

A diode

I Open Set U

$S_{1}(T) \backslash U$ is not definable. X

A diode

I Open Set U

$S_{1}(T) \backslash U$ is definable.

A diode

I Open Set U

$S_{1}(T) \backslash U$ is definable.

A diode

I Open Set U

Roughly: $S_{1}(T) \backslash U$ is definable iff $A \in U \rightarrow B \in U$.

An AND gate

Open Set U

An AND gate

Open Set U

$S_{1}(T) \backslash U$ is definable.

An AND gate

Open Set U

$S_{1}(T) \backslash U$ is definable.

An AND gate

Open Set U

$S_{1}(T) \backslash U$ is not definable. X

An AND gate

Open Set U

$S_{1}(T) \backslash U$ is definable.

An AND gate

Open Set U

$S_{1}(T) \backslash U$ is definable.

An AND gate

Open Set U

$S_{1}(T) \backslash U$ is definable.

An AND gate

I Open Set U

Roughly: $S_{1}(T) \backslash U$ is definable iff $A \in U \wedge B \in U \rightarrow C \in U$.

The construction

Take your favorite finite lattice with more than one element

The construction

Take your favorite finite lattice with more than one element and flip it upside down.

The construction

Take your favorite finite lattice with more than one element and flip it upside down. Also cut the bottom off (point representing \varnothing would be redundant).

The construction

Take your favorite finite lattice with more than one element and flip it upside down. Also cut the bottom off (point representing \varnothing would be redundant).

Diode for each pair with $x \leq y$

The construction

Take your favorite finite lattice with more than one element and flip it upside down. Also cut the bottom off (point representing \varnothing would be redundant).

Diode for each pair with $x \leq y$
and AND gate for each triple with $x \leq y \vee z$

The construction

Take your favorite finite lattice with more than one element and flip it upside down. Also cut the bottom off (point representing \varnothing would be redundant).

Diode for each pair with $x \leq y$
and AND gate for each triple with $x \leq y \vee z$

Each definable set is uniquely specified by the unique minimal node that it does not contain. (Including
A.)

The construction

Take your favorite finite lattice with more than one element and flip it upside down. Also cut the bottom off (point representing \varnothing would be redundant).

Diode for each pair with $x \leq y$
and AND gate for each triple with $x \leq y \vee z$

Each definable set is uniquely specified by the unique minimal node that it does not contain. (Including
A.)

The construction

Take your favorite finite lattice with more than one element and flip it upside down. Also cut the bottom off (point representing \varnothing would be redundant).

Diode for each pair with $x \leq y$
and AND gate for each triple with $x \leq y \vee z$

Each definable set is uniquely specified by the unique minimal node that it does not contain. (Including
A.)

The construction

Take your favorite finite lattice with more than one element and flip it upside down. Also cut the bottom off (point representing \varnothing would be redundant).

Diode for each pair with $x \leq y$
and AND gate for each triple with $x \leq y \vee z$

Each definable set is uniquely specified by the unique minimal node that it does not contain. (Including
A.)

The construction

Take your favorite finite lattice with more than one element and flip it upside down. Also cut the bottom off (point representing \varnothing would be redundant).

Diode for each pair with $x \leq y$
and AND gate for each triple with $x \leq y \vee z$

Each definable set is uniquely specified by the unique minimal node that it does not contain. (Including
A.)

The construction

Take your favorite finite lattice with more than one element and flip it upside down. Also cut the bottom off (point representing \varnothing would be redundant).

Diode for each pair with $x \leq y$
and AND gate for each triple with $x \leq y \vee z$

Each definable set is uniquely specified by the unique minimal node that it does not contain. (Including A.)

Superstability

When you interpret a type space X built this way as a structure, the resulting theory's $S_{1}(T)$ is X. (X is autological.)

Superstability

- When you interpret a type space X built this way as a structure, the resulting theory's $S_{1}(T)$ is X. (X is autological.)
- Resulting theory is weakly minimal with trivial geometry, so superstable.

Superstability

- When you interpret a type space X built this way as a structure, the resulting theory's $S_{1}(T)$ is X. (X is autological.)
- Resulting theory is weakly minimal with trivial geometry, so superstable.

Question

Which type spaces are autological?

Superstability

- When you interpret a type space X built this way as a structure, the resulting theory's $S_{1}(T)$ is X. (X is autological.)
- Resulting theory is weakly minimal with trivial geometry, so superstable.

Question

Which type spaces are autological? Is the theory of an autological type space always weakly minimal with trivial geometry?

To infinity and not very much further

Which infinite semilattices can we have?

- General principles tell us that a type space (in a countable language) must have either $\leq \aleph_{0}$ or $2^{\aleph_{0}}$ definable sets. (Complete metric space.)

Which infinite semilattices can we have?

- General principles tell us that a type space (in a countable language) must have either $\leq \aleph_{0}$ or $2^{\aleph_{0}}$ definable sets. (Complete metric space.)
- There is a way to 'compactify' infinite but locally finite graphs of the kind we built here to get the associated lattice together with a new bottom element,

Which infinite semilattices can we have?

- General principles tell us that a type space (in a countable language) must have either $\leq \aleph_{0}$ or $2^{\aleph_{0}}$ definable sets. (Complete metric space.)
- There is a way to 'compactify' infinite but locally finite graphs of the kind we built here to get the associated lattice together with a new bottom element, but not every countable lattice can be expressed in this way (e.g. $\omega+2$).

Thank you

