How bad could it be?
 The semilattice of definable sets in continuous logic

James Hanson
University of Maryland, College Park

April 21, 2023
CUNY Logic Workshop

Continuous logic

- Metric structure example: $(\mathbb{R},+, d)$, where $d(x, y)=\min (|x-y|, 1)$.

Continuous logic

- Metric structure example: $(\mathbb{R},+, d)$, where $d(x, y)=\min (|x-y|, 1)$.
- Metric is bounded and complete. + is uniformly continuous.

Continuous logic

- Metric structure example: $(\mathbb{R},+, d)$, where $d(x, y)=\min (|x-y|, 1)$.
- Metric is bounded and complete. + is uniformly continuous.
$\square(\mathbb{R},+)$ is abelian:

$$
\sup _{x y} d(x+y, y+x)=0
$$

Continuous logic

- Metric structure example: $(\mathbb{R},+, d)$, where $d(x, y)=\min (|x-y|, 1)$.
- Metric is bounded and complete. + is uniformly continuous.
$\square(\mathbb{R},+)$ is abelian:

$$
\sup _{x y} d(x+y, y+x)=0
$$

- (Approximate) division by 2 :

$$
\sup _{x} \inf _{y} d(x, y+y)=0
$$

Continuous logic

- Metric structure example: $(\mathbb{R},+, d)$, where $d(x, y)=\min (|x-y|, 1)$.
- Metric is bounded and complete. + is uniformly continuous.
$\square(\mathbb{R},+)$ is abelian:

$$
\sup _{x y} d(x+y, y+x)=0
$$

- (Approximate) division by 2 :

$$
\sup _{x} \inf _{y} d(x, y+y)=0
$$

■ Elementary extensions: $\mathbb{R} \oplus \mathbb{Q}^{\oplus \kappa}$, where $\mathbb{Q}^{\oplus \kappa}$ has $\{0,1\}$-metric.

Type space

- The type of \bar{b} over A is specified by the values $\varphi(\bar{b}, \bar{a})$ for all formulas φ and $\bar{a} \in A$.

Type space

- The type of \bar{b} over A is specified by the values $\varphi(\bar{b}, \bar{a})$ for all formulas φ and $\bar{a} \in A$.
- Space of n-types, $\left(S_{n}(A), \tau\right)$, is a compact Hausdorff space.

Type space

- The type of \bar{b} over A is specified by the values $\varphi(\bar{b}, \bar{a})$ for all formulas φ and $\bar{a} \in A$.
- Space of n-types, $\left(S_{n}(A), \tau\right)$, is a compact Hausdorff space.
- There is a metric:

$$
d(p, q)=\inf \{d(\bar{a}, \bar{b}): \bar{a} \models p, \bar{b} \models q\}
$$

Type space

- The type of \bar{b} over A is specified by the values $\varphi(\bar{b}, \bar{a})$ for all formulas φ and $\bar{a} \in A$.
- Space of n-types, $\left(S_{n}(A), \tau\right)$, is a compact Hausdorff space.
- There is a metric:

$$
d(p, q)=\inf \{d(\bar{a}, \bar{b}): \bar{a} \models p, \bar{b} \models q\}
$$

- $\left(S_{n}(T), \tau, d\right)$ is a topometric space:

Type space

- The type of \bar{b} over A is specified by the values $\varphi(\bar{b}, \bar{a})$ for all formulas φ and $\bar{a} \in A$.
- Space of n-types, $\left(S_{n}(A), \tau\right)$, is a compact Hausdorff space.
- There is a metric:

$$
d(p, q)=\inf \{d(\bar{a}, \bar{b}): \bar{a} \models p, \bar{b} \models q\}
$$

$\square\left(S_{n}(T), \tau, d\right)$ is a topometric space: d refines τ

Type space

- The type of \bar{b} over A is specified by the values $\varphi(\bar{b}, \bar{a})$ for all formulas φ and $\bar{a} \in A$.
- Space of n-types, $\left(S_{n}(A), \tau\right)$, is a compact Hausdorff space.
- There is a metric:

$$
d(p, q)=\inf \{d(\bar{a}, \bar{b}): \bar{a} \models p, \bar{b} \models q\}
$$

$\square\left(S_{n}(T), \tau, d\right)$ is a topometric space: d refines τ and $\{(p, q): d(p, q) \leq r\}$ is closed in $S_{n}(T)^{2}$ for all r.

Type space

- The type of \bar{b} over A is specified by the values $\varphi(\bar{b}, \bar{a})$ for all formulas φ and $\bar{a} \in A$.
- Space of n-types, $\left(S_{n}(A), \tau\right)$, is a compact Hausdorff space.
- There is a metric:

$$
d(p, q)=\inf \{d(\bar{a}, \bar{b}): \bar{a} \models p, \bar{b} \models q\}
$$

$\square\left(S_{n}(T), \tau, d\right)$ is a topometric space: d refines τ and $\{(p, q): d(p, q) \leq r\}$ is closed in $S_{n}(T)^{2}$ for all r.

- For any closed F and $r>0, F^{\leq r}=\{p: d(p, F) \leq r\}$ is closed.

Type space

- The type of \bar{b} over A is specified by the values $\varphi(\bar{b}, \bar{a})$ for all formulas φ and $\bar{a} \in A$.
- Space of n-types, $\left(S_{n}(A), \tau\right)$, is a compact Hausdorff space.
- There is a metric:

$$
d(p, q)=\inf \{d(\bar{a}, \bar{b}): \bar{a} \models p, \bar{b} \models q\}
$$

$\square\left(S_{n}(T), \tau, d\right)$ is a topometric space: d refines τ and $\{(p, q): d(p, q) \leq r\}$ is closed in $S_{n}(T)^{2}$ for all r.

- For any closed F and $r>0, F^{\leq r}=\{p: d(p, F) \leq r\}$ is closed.
- d is also open: For any open U and $r>0, U^{<r}$ is open.

Type space

- The type of \bar{b} over A is specified by the values $\varphi(\bar{b}, \bar{a})$ for all formulas φ and $\bar{a} \in A$.
- Space of n-types, $\left(S_{n}(A), \tau\right)$, is a compact Hausdorff space.
- There is a metric:

$$
d(p, q)=\inf \{d(\bar{a}, \bar{b}): \bar{a} \models p, \bar{b} \models q\}
$$

$\square\left(S_{n}(T), \tau, d\right)$ is a topometric space: d refines τ and $\{(p, q): d(p, q) \leq r\}$ is closed in $S_{n}(T)^{2}$ for all r.

- For any closed F and $r>0, F^{\leq r}=\{p: d(p, F) \leq r\}$ is closed.
- d is also open: For any open U and $r>0, U^{<r}$ is open.
\square (H.) Any compact topometric space (X, τ, ρ) with open metric ρ is isomorphic to $S_{1}(T)$ for some strictly stable T.

$S_{1}(\mathbb{R} \oplus \mathbb{Q})$

Unique non-algebraic type

Definable sets

- A closed set $D \subseteq S_{n}(T)$ is definable iff $d(x, D)$ is continuous.

Definable sets

- A closed set $D \subseteq S_{n}(T)$ is definable iff $d(x, D)$ is continuous. Equivalently:
- $D^{<r}$ is open for every $r>0$.

Definable sets

- A closed set $D \subseteq S_{n}(T)$ is definable iff $d(x, D)$ is continuous. Equivalently:
- $D^{<r}$ is open for every $r>0$.

■ No sequence (or net) sneaks up on D (i.e. $\lim p_{i}=q \in D$ but $\left.\lim \inf d\left(p_{i}, D\right)>0\right)$.

Definable sets

- A closed set $D \subseteq S_{n}(T)$ is definable iff $d(x, D)$ is continuous. Equivalently:
- $D^{<r}$ is open for every $r>0$.

■ No sequence (or net) sneaks up on D (i.e. $\lim p_{i}=q \in D$ but $\left.\lim \inf d\left(p_{i}, D\right)>0\right)$.

- D admits relative quantification (i.e. $\sup _{x \in D}$).

Definable sets

- A closed set $D \subseteq S_{n}(T)$ is definable iff $d(x, D)$ is continuous. Equivalently:
- $D^{<r}$ is open for every $r>0$.

■ No sequence (or net) sneaks up on D (i.e. $\lim p_{i}=q \in D$ but $\left.\lim \inf d\left(p_{i}, D\right)>0\right)$.

- D admits relative quantification (i.e. $\sup _{x \in D}$).
- D is compatible with ultrapowers (i.e. $\left.D\left(M^{\mathcal{U}}\right)=D(M)^{\mathcal{U}}\right)$

Definable sets

- A closed set $D \subseteq S_{n}(T)$ is definable iff $d(x, D)$ is continuous. Equivalently:
- $D^{<r}$ is open for every $r>0$.

■ No sequence (or net) sneaks up on D (i.e. $\lim p_{i}=q \in D$ but $\left.\lim \inf d\left(p_{i}, D\right)>0\right)$.

- D admits relative quantification (i.e. $\sup _{x \in D}$).
- D is compatible with ultrapowers (i.e. $\left.D\left(M^{\mathcal{U}}\right)=D(M)^{\mathcal{U}}\right)$

■ Example: The set $\{0\} \subset \mathbb{R}$ is definable in $(\mathbb{R},+, d)$ without parameters by

$$
d(x,\{0\})=d(x, x+x)
$$

Definable sets

- A closed set $D \subseteq S_{n}(T)$ is definable iff $d(x, D)$ is continuous. Equivalently:
- $D^{<r}$ is open for every $r>0$.
- No sequence (or net) sneaks up on D (i.e. $\lim p_{i}=q \in D$ but $\left.\lim \inf d\left(p_{i}, D\right)>0\right)$.
- D admits relative quantification (i.e. $\sup _{x \in D}$).
- D is compatible with ultrapowers (i.e. $\left.D\left(M^{\mathcal{U}}\right)=D(M)^{\mathcal{U}}\right)$

■ Example: The set $\{0\} \subset \mathbb{R}$ is definable in $(\mathbb{R},+, d)$ without parameters by

$$
d(x,\{0\})=d(x, x+x)
$$

■ If T is ω-stable, then $S_{n}(A)$ always has a basis of definable neighborhoods. (T is dictionaric.)

Many definable sets: $S_{1}(M), M=\left(\mathbb{R}_{\geq 0}, \cos , \sin , d\right)$

Many definable sets: $S_{1}(M), M=\left(\mathbb{R}_{\geq 0}, \cos , \sin , d\right)$

- $\operatorname{Th}(M)$ is ω-stable, so has many definable sets (e.g. $\{x: \cos (x) \in F\}$ for any closed F).

Many definable sets: $S_{1}(M), M=\left(\mathbb{R}_{\geq 0}, \cos , \sin , d\right)$

- $\operatorname{Th}(M)$ is ω-stable, so has many definable sets (e.g. $\{x: \cos (x) \in F\}$ for any closed F).
- Metric on non-algebraic types is (roughly) path metric.

Few definable sets: $S_{1}(N), N=(\mathbb{N}$, succ, $\cos , \sin , d)$

Few definable sets: $S_{1}(N), N=(\mathbb{N}$, succ, $\cos , \sin , d)$

$\square \operatorname{Th}(N)$ is superstable.

Few definable sets: $S_{1}(N), N=(\mathbb{N}$, succ, $\cos , \sin , d)$

- $\operatorname{Th}(N)$ is superstable.
- Metric on non-algebraic types is discrete.

Few definable sets: $S_{1}(N), N=(\mathbb{N}$, succ, $\cos , \sin , d)$

- $\operatorname{Th}(N)$ is superstable.
- Metric on non-algebraic types is discrete. Every definable set is either finite and algebraic or cofinite and co-algebraic.

Many but not enough I

Many but not enough II

Closed F,

Many but not enough II

Closed F, with $F^{<\frac{1}{4}}$.

Many but not enough II

Closed F, with $F^{<\frac{1}{4}}$.
Not definable.

Many but not enough III

Definable set D, with $D^{<\frac{1}{4}}$.

Many but not enough IV

Almost any two points are separated by disjoint definable neighborhoods.

Many but not enough V

There is no non-empty definable D with $D \subseteq U$.

The semilattice of definable sets

Unions

Proposition

If D and E are definable sets, then $D \vee E$ is a definable set.

Unions

Proposition

If D and E are definable sets, then $D \vee E$ is a definable set.

Proof.

$d(p, D \vee E)=\min (d(p, D), d(p, E))$.

Unions

Proposition

If D and E are definable sets, then $D \vee E$ is a definable set.

Proof.

$d(p, D \vee E)=\min (d(p, D), d(p, E))$.
Given a type space $S_{n}(T)$, the collection of definable subsets of it forms a bounded upper semilattice (\varnothing and $S_{n}(T)$ are always definable) under unions.

Where have all the algebraic operations gone?

Complement?

Where have all the algebraic operations gone?

Complement? Typically not even closed.

Where have all the algebraic operations gone?

Complement? Typically not even closed.
Intersection?

Where have all the algebraic operations gone?

- Complement? Typically not even closed.
- Intersection? $d(p, D \wedge E) \neq \max (d(p, D), d(p, E))$.

Where have all the algebraic operations gone?

- Complement? Typically not even closed.
- Intersection? $d(p, D \wedge E) \neq \max (d(p, D), d(p, E))$.

Example

$D \wedge E$ need not be definable for D and E definable.

Where have all the algebraic operations gone?

- Complement? Typically not even closed.
- Intersection? $d(p, D \wedge E) \neq \max (d(p, D), d(p, E))$.

Example

$D \wedge E$ need not be definable for D and E definable.
In square type space:

Prototypical example: Structure

- M is this subset of $[-1,1] \times[0,1]$.

Prototypical example: Structure

- M is this subset of $[-1,1] \times[0,1]$.
- P and Q are unary predicates.

Prototypical example: Structure

Prototypical example: Structure

Prototypical example: Type space

Prototypical example: Type space

- $S_{1}(T)$ is homeomorphic to this subset of $[-1,1] \times[0,1]$.
- Metric is the same as on M.

Prototypical example: Type space

- $S_{1}(T)$ is homeomorphic to this subset of $[-1,1] \times[0,1]$.
- Metric is the same as on M.
- Has precisely 22 definable sets.

Prototypical example: Type space

- $S_{1}(T)$ is homeomorphic to this subset of $[-1,1] \times[0,1]$.
- Metric is the same as on M.
- Has precisely 22 definable sets.

Prototypical example: Type space

- $S_{1}(T)$ is homeomorphic to this subset of $[-1,1] \times[0,1]$.
- Metric is the same as on M.
- Has precisely 22 definable sets.

Prototypical example: Type space

- $S_{1}(T)$ is homeomorphic to this subset of $[-1,1] \times[0,1]$.
- Metric is the same as on M.
- Has precisely 22 definable sets.

Which finite semilattices can we have?

The poset of definable subsets of a type space is always a bounded upper semilattice.

Which finite semilattices can we have?

- The poset of definable subsets of a type space is always a bounded upper semilattice.
- Finite semilattices are automatically complete and therefore lattices if they have least elements, so really the question is which lattices?
- For a consistent $T, S_{1}(T)$ always has at least 2 definable sets. Inconsistent T has 1 (pedantically).

Which finite semilattices can we have?

- The poset of definable subsets of a type space is always a bounded upper semilattice.
- Finite semilattices are automatically complete and therefore lattices if they have least elements, so really the question is which lattices?
- For a consistent $T, S_{1}(T)$ always has at least 2 definable sets. Inconsistent T has 1 (pedantically).

Proposition (H.)

Every finite lattice is the lattice of definable sets of $S_{1}(T)$ for some superstable theory T.

Which finite semilattices can we have?

- The poset of definable subsets of a type space is always a bounded upper semilattice.
- Finite semilattices are automatically complete and therefore lattices if they have least elements, so really the question is which lattices?
- For a consistent $T, S_{1}(T)$ always has at least 2 definable sets. Inconsistent T has 1 (pedantically).

Proposition (H.)

Every finite lattice is the lattice of definable sets of $S_{1}(T)$ for some superstable theory T.

In other words, maximally bad.

Which finite semilattices can we have?

- The poset of definable subsets of a type space is always a bounded upper semilattice.
- Finite semilattices are automatically complete and therefore lattices if they have least elements, so really the question is which lattices?
- For a consistent $T, S_{1}(T)$ always has at least 2 definable sets. Inconsistent T has 1 (pedantically).

Proposition (H.)

Every finite lattice is the lattice of definable sets of $S_{1}(T)$ for some superstable theory T.

In other words, maximally bad. Let's prove this.

Wires

Wires

Wires

Wires

Wires

Wires

Wires

Wires

$$
\begin{aligned}
& 1 \\
& \text { CONTRADICTION! }
\end{aligned}
$$

$$
\begin{aligned}
& p(x) \models \inf _{y}\left|d(x, y)-\frac{1}{2}\right|=0 \\
& q(x) \models \inf _{y}\left|d(x, y)-\frac{1}{2}\right|=\frac{1}{2}
\end{aligned}
$$

Wires

Wires

Wires

$$
\underset{d(r, s)=[r \neq s]}{ } \quad q(x) \models \inf _{y}\left|d(x, y)-\frac{1}{2}\right|=0, ~ q \inf _{y}|d(x, y)-1|=0,
$$

Wires

Wires

Normal Metric Zone

All Distances Are 0 or 1 Zone

Wires

Normal Metric Zone

All Distances Are 0 or 1 Zone

Wires

Normal Metric Zone

All Distances Are 0 or 1 Zone

Wires

Wires

Wires

A diode

A diode

I Open Set U

A diode

I Open Set U

$S_{1}(T) \backslash U$ is not definable. X

A diode

I Open Set U

$S_{1}(T) \backslash U$ is definable.

A diode

I Open Set U

$S_{1}(T) \backslash U$ is definable.

A diode

I Open Set U

Roughly: $S_{1}(T) \backslash U$ is definable iff $A \in U \rightarrow B \in U$.

An AND gate

I Open Set U

An AND gate

Open Set U

$S_{1}(T) \backslash U$ is definable.

An AND gate

Open Set U

$S_{1}(T) \backslash U$ is definable.

An AND gate

I Open Set U

$S_{1}(T) \backslash U$ is not definable. X

An AND gate

I Open Set U

$S_{1}(T) \backslash U$ is definable.

An AND gate

Open Set U

$S_{1}(T) \backslash U$ is definable.

An AND gate

Open Set U

$S_{1}(T) \backslash U$ is definable.

An AND gate

I Open Set U

Roughly: $S_{1}(T) \backslash U$ is definable iff $A \in U \wedge B \in U \rightarrow C \in U$.

The construction

Take your favorite finite lattice with more than one element

The construction

Take your favorite finite lattice with more than one element and flip it upside down.

The construction

Take your favorite finite lattice with more than one element and flip it upside down. Also cut the bottom off (point representing \varnothing would be redundant).

The construction

Take your favorite finite lattice with more than one element and flip it upside down. Also cut the bottom off (point representing \varnothing would be redundant).

Diode for each pair with $x \leq y$

The construction

Take your favorite finite lattice with more than one element and flip it upside down. Also cut the bottom off (point representing \varnothing would be redundant).

Diode for each pair with $x \leq y$
and AND gate for each triple with $x \leq y \vee z$

The construction

Take your favorite finite lattice with more than one element and flip it upside down. Also cut the bottom off (point representing \varnothing would be redundant).

Diode for each pair with $x \leq y$
and AND gate for each triple with $x \leq y \vee z$

Each non-empty co-definable set is specified by the unique maximal node that it contains.

The construction

Take your favorite finite lattice with more than one element and flip it upside down. Also cut the bottom off (point representing \varnothing would be redundant).

Diode for each pair with $x \leq y$
and AND gate for each triple with $x \leq y \vee z$

Each non-empty co-definable set is specified by the unique maximal node that it contains.

The construction

Take your favorite finite lattice with more than one element and flip it upside down. Also cut the bottom off (point representing \varnothing would be redundant).

Diode for each pair with $x \leq y$
and AND gate for each triple with $x \leq y \vee z$

The construction

Take your favorite finite lattice with more than one element and flip it upside down. Also cut the bottom off (point representing \varnothing would be redundant).

Diode for each pair with $x \leq y$
and AND gate for each triple with $x \leq y \vee z$

Each non-empty co-definable set is specified by the unique maximal node that it contains.

The construction

Take your favorite finite lattice with more than one element and flip it upside down. Also cut the bottom off (point representing \varnothing would be redundant).

Diode for each pair with $x \leq y$
and AND gate for each triple with $x \leq y \vee z$

Each non-empty co-definable set is specified by the unique maximal node that it contains.

The construction

Take your favorite finite lattice with more than one element and flip it upside down. Also cut the bottom off (point representing \varnothing would be redundant).

Diode for each pair with $x \leq y$
and AND gate for each triple with $x \leq y \vee z$

Each non-empty co-definable set is specified by the unique maximal node that it contains.

The construction

Take your favorite finite lattice with more than one element and flip it upside down. Also cut the bottom off (point representing \varnothing would be redundant).

Dually, each definable set is specified by the unique minimal node that it does not contain.

The construction

Take your favorite finite lattice with more than one element and flip it upside down. Also cut the bottom off (point representing \varnothing would be redundant).

Dually, each definable set is specified by the unique minimal node that it does not contain.

The construction

Take your favorite finite lattice with more than one element and flip it upside down. Also cut the bottom off (point representing \varnothing would be redundant).

Dually, each definable set is specified by the unique minimal node that it does not contain.

The construction

Take your favorite finite lattice with more than one element and flip it upside down. Also cut the bottom off (point representing \varnothing would be redundant).

Dually, each definable set is specified by the unique minimal node that it does not contain.

The construction

Take your favorite finite lattice with more than one element and flip it upside down. Also cut the bottom off (point representing \varnothing would be redundant).

Dually, each definable set is specified by the unique minimal node that it does not contain.

Topology

The type spaces constructed here can always be embedded in \mathbb{R}^{3} (topological graphs).

Topology

- The type spaces constructed here can always be embedded in \mathbb{R}^{3} (topological graphs).
- Being \mathbb{R}-embeddable imposes strong restrictions on the semilattice of definable sets.

Topology

- The type spaces constructed here can always be embedded in \mathbb{R}^{3} (topological graphs).
- Being \mathbb{R}-embeddable imposes strong restrictions on the semilattice of definable sets. Cannot be M_{3}, for instance.

Topology

- The type spaces constructed here can always be embedded in \mathbb{R}^{3} (topological graphs).
- Being \mathbb{R}-embeddable imposes strong restrictions on the semilattice of definable sets. Cannot be M_{3}, for instance.

Question

What finite semilattices can be the partial order of definable sets in an \mathbb{R}-embeddable type space?

Topology

- The type spaces constructed here can always be embedded in \mathbb{R}^{3} (topological graphs).
- Being \mathbb{R}-embeddable imposes strong restrictions on the semilattice of definable sets. Cannot be M_{3}, for instance.

Question

What finite semilattices can be the partial order of definable sets in an \mathbb{R}-embeddable type space? An \mathbb{R}^{2}-embeddable type space?

Some infinite lattices

Which infinite semilattices can we have? I

- General principles tell us that a type space (in a countable language) must have either $\leq \aleph_{0}$ or $2^{\aleph_{0}}$ definable sets. (Complete metric space.)

Which infinite semilattices can we have? I

- General principles tell us that a type space (in a countable language) must have either $\leq \aleph_{0}$ or $2^{\aleph_{0}}$ definable sets. (Complete metric space.)
- Some specific infinite lattices can be constructed.

Which infinite semilattices can we have? I

- General principles tell us that a type space (in a countable language) must have either $\leq \aleph_{0}$ or $2^{\aleph_{0}}$ definable sets. (Complete metric space.)
- Some specific infinite lattices can be constructed.

Proposition (H.)

For any ordinal α, the lattices $\alpha+1$ and $(\alpha+1)^{*}$ (the reverse order) are the lattices of definable sets in some stable theory.

Which infinite semilattices can we have? I

- General principles tell us that a type space (in a countable language) must have either $\leq \aleph_{0}$ or $2^{\aleph_{0}}$ definable sets. (Complete metric space.)
- Some specific infinite lattices can be constructed.

Proposition (H.)

For any ordinal α, the lattices $\alpha+1$ and $(\alpha+1)^{*}$ (the reverse order) are the lattices of definable sets in some stable theory.

- Example:

$$
(\omega+\omega+1)^{*}
$$

Which infinite semilattices can we have? II

With a more involved version of the earlier arguments, we can get this:

Which infinite semilattices can we have? II

With a more involved version of the earlier arguments, we can get this:

Theorem (H.)

For any countable meet-semilattice (L, \wedge), there is a stable theory whose join-semilattice of definable sets is isomorphic to the lattice of filters on L (i.e. upwards-closed sets closed under meets).

Which infinite semilattices can we have? II

With a more involved version of the earlier arguments, we can get this:

Theorem (H.)

For any countable meet-semilattice (L, \wedge), there is a stable theory whose join-semilattice of definable sets is isomorphic to the lattice of filters on L (i.e. upwards-closed sets closed under meets).

Proof sketch.

Do a non-compact version of the circuit construction on Slide 22.

Which infinite semilattices can we have? II

With a more involved version of the earlier arguments, we can get this:

Theorem (H.)

For any countable meet-semilattice (L, \wedge), there is a stable theory whose join-semilattice of definable sets is isomorphic to the lattice of filters on L (i.e. upwards-closed sets closed under meets).

Proof sketch.

Do a non-compact version of the circuit construction on Slide 22. Argue that arbitrary unions of definable sets are definable and so the resulting lattice of definable sets is the lattice of filters on L.

Which infinite semilattices can we have? II

With a more involved version of the earlier arguments, we can get this:

Theorem (H.)

For any countable meet-semilattice (L, \wedge), there is a stable theory whose join-semilattice of definable sets is isomorphic to the lattice of filters on L (i.e. upwards-closed sets closed under meets).

Proof sketch.

Do a non-compact version of the circuit construction on Slide 22. Argue that arbitrary unions of definable sets are definable and so the resulting lattice of definable sets is the lattice of filters on L. Carefully compactify in a way that preserves the collection of definable sets and results in an open metric.

Which infinite semilattices can we have? II

With a more involved version of the earlier arguments, we can get this:

Theorem (H.)

For any countable meet-semilattice (L, \wedge), there is a stable theory whose join-semilattice of definable sets is isomorphic to the lattice of filters on L (i.e. upwards-closed sets closed under meets).

Proof sketch.

Do a non-compact version of the circuit construction on Slide 22. Argue that arbitrary unions of definable sets are definable and so the resulting lattice of definable sets is the lattice of filters on L. Carefully compactify in a way that preserves the collection of definable sets and results in an open metric. Apply the result from Slide 3.

Which infinite semilattices can we have? II

With a more involved version of the earlier arguments, we can get this:

Theorem (H.)

For any countable meet-semilattice (L, \wedge), there is a stable theory whose join-semilattice of definable sets is isomorphic to the lattice of filters on L (i.e. upwards-closed sets closed under meets).

Proof sketch.

Do a non-compact version of the circuit construction on Slide 22. Argue that arbitrary unions of definable sets are definable and so the resulting lattice of definable sets is the lattice of filters on L. Carefully compactify in a way that preserves the collection of definable sets and results in an open metric. Apply the result from Slide 3.

There are also many examples of semilattices that are not lattices,

Which infinite semilattices can we have? II

With a more involved version of the earlier arguments, we can get this:

Theorem (H.)

For any countable meet-semilattice (L, \wedge), there is a stable theory whose join-semilattice of definable sets is isomorphic to the lattice of filters on L (i.e. upwards-closed sets closed under meets).

Proof sketch.

Do a non-compact version of the circuit construction on Slide 22. Argue that arbitrary unions of definable sets are definable and so the resulting lattice of definable sets is the lattice of filters on L. Carefully compactify in a way that preserves the collection of definable sets and results in an open metric. Apply the result from Slide 3.

There are also many examples of semilattices that are not lattices, but the methods here are far form comprehensive.

Thank you

