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Continuous logic

Metric structure example: (R,+, d), where d(x , y) = min(|x − y |, 1).

Metric is bounded and complete. + is uniformly continuous.

(R,+) is abelian:
sup
xy

d(x + y , y + x) = 0

(Approximate) division by 2:

sup
x

inf
y
d(x , y + y) = 0

Elementary extensions: R⊕Q⊕κ, where Q⊕κ has {0, 1}-metric.
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Type space

The type of b̄ over A is specified by the values φ(b̄, ā) for all formulas
φ and ā ∈ A.

Space of n-types, (Sn(A), τ), is a compact Hausdorff space.

There is a metric:

d(p, q) = inf{d(ā, b̄) : ā |= p, b̄ |= q}

(Sn(T ), τ, d) is a topometric space: d refines τ and
{(p, q) : d(p, q) ≤ r} is closed in Sn(T )2 for all r .

For any closed F and r > 0, F≤r = {p : d(p,F ) ≤ r} is closed.

d is also open: For any open U and r > 0, U<r is open.

(H.) Any compact topometric space (X , τ, ρ) with open metric ρ is
isomorphic to S1(T ) for some strictly stable T .
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φ and ā ∈ A.
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φ and ā ∈ A.

Space of n-types, (Sn(A), τ), is a compact Hausdorff space.

There is a metric:

d(p, q) = inf{d(ā, b̄) : ā |= p, b̄ |= q}

(Sn(T ), τ, d) is a topometric space: d refines τ and
{(p, q) : d(p, q) ≤ r} is closed in Sn(T )2 for all r .

For any closed F and r > 0, F≤r = {p : d(p,F ) ≤ r} is closed.

d is also open: For any open U and r > 0, U<r is open.

(H.) Any compact topometric space (X , τ, ρ) with open metric ρ is
isomorphic to S1(T ) for some strictly stable T .

James Hanson (UMD) How bad could it be? April 21, 2023 3 / 26



Type space

The type of b̄ over A is specified by the values φ(b̄, ā) for all formulas
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S1(R⊕Q)
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Unique non-algebraic type
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Definable sets

A closed set D ⊆ Sn(T ) is definable iff d(x ,D) is continuous.

Equivalently:

D<r is open for every r > 0.
No sequence (or net) sneaks up on D (i.e. lim pi = q ∈ D but
lim inf d(pi ,D) > 0).
D admits relative quantification (i.e. supx∈D).
D is compatible with ultrapowers (i.e. D(MU ) = D(M)U )

Example: The set {0} ⊂ R is definable in (R,+, d) without
parameters by

d(x , {0}) = d(x , x + x).

If T is ω-stable, then Sn(A) always has a basis of definable
neighborhoods. (T is dictionaric.)
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Many definable sets: S1(M), M = (R≥0, cos, sin, d)
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Th(M) is ω-stable, so has many definable sets (e.g. {x : cos(x) ∈ F}
for any closed F ).

Metric on non-algebraic types is (roughly) path metric.
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Few definable sets: S1(N), N = (N, succ, cos, sin, d)

0
1

2

3
4

5

6 7

8

9
10

11

12
13

14

15

16
17

18

19 20

21

2223

24

25

Th(N) is superstable.

Metric on non-algebraic types is discrete. Every definable set is either
finite and algebraic or cofinite and co-algebraic.
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Many but not enough I

x
0 1

y

0

1

d = 1

d = 1

d < 1

d((x0, y0), (x1, y1)) = 1 if y0 ̸= y1.
d((x0, y), (x1, y)) = |x0 − x1|.
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Many but not enough II

Closed F ,
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Many but not enough II

Closed F , with F< 1
4 .
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Many but not enough II

Sneak!

Sneak!

Closed F , with F< 1
4 .

Not definable.
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Many but not enough III

Definable set D, with D< 1
4 .
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Many but not enough IV

D0

D1

p

q

Almost any two points are separated by disjoint definable neighborhoods.
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Many but not enough V

U
p

There is no non-empty definable D with D ⊆ U.
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The semilattice of definable sets
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Unions

Proposition

If D and E are definable sets, then D ∨ E is a definable set.

Proof.

d(p,D ∨ E ) = min(d(p,D), d(p,E )).

Given a type space Sn(T ), the collection of definable subsets of it forms a
bounded upper semilattice (∅ and Sn(T ) are always definable) under
unions.
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Where have all the algebraic operations gone?

Complement?

Typically not even closed.
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Example
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Prototypical example: Structure

M−1 1

0

1

(0, 12)

M is this subset of
[−1, 1]× [0, 1].

P and Q are unary
predicates.

d(x , y) = |Q(x)− Q(y)| if
P(x) = P(y) and is 1
otherwise.

Let T = Th(M).
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Prototypical example: Type space

S1(T ) is homeomorphic to
this subset of [−1, 1]× [0, 1].

Metric is the same as on M.

Has precisely 22 definable
sets.

S1(T )
−1 1

0

1

P

Q
tp(0, 12)
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Which finite semilattices can we have?

The poset of definable subsets of a type space is always a bounded
upper semilattice.

Finite semilattices are automatically complete and therefore lattices if
they have least elements, so really the question is which lattices?

For a consistent T , S1(T ) always has at least 2 definable sets.
Inconsistent T has 1 (pedantically).

Proposition (H.)

Every finite lattice is the lattice of definable sets of S1(T ) for some
superstable theory T .

In other words, maximally bad. Let’s prove this.

James Hanson (UMD) How bad could it be? April 21, 2023 18 / 26
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Roughly: S1(T ) \ U is definable iff A ∈ U ∧ B ∈ U → C ∈ U.
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The construction

Take your favorite finite lattice with more than one element

and flip it
upside down. Also cut the bottom off (point representing ∅ would be
redundant).

E C

F

B

A
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Topology

The type spaces constructed here can always be embedded in R3

(topological graphs).

Being R-embeddable imposes strong restrictions on the semilattice of
definable sets. Cannot be M3, for instance.

Question

What finite semilattices can be the partial order of definable sets in an
R-embeddable type space? An R2-embeddable type space?
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Some infinite lattices
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Which infinite semilattices can we have? I

General principles tell us that a type space (in a countable language)
must have either ≤ ℵ0 or 2ℵ0 definable sets. (Complete metric space.)

Some specific infinite lattices can be constructed.

Proposition (H.)

For any ordinal α, the lattices α+ 1 and (α+ 1)∗ (the reverse order) are
the lattices of definable sets in some stable theory.

Example:

(ω + ω + 1)∗
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Which infinite semilattices can we have? II

With a more involved version of the earlier arguments, we can get this:

Theorem (H.)

For any countable meet-semilattice (L,∧), there is a stable theory whose
join-semilattice of definable sets is isomorphic to the lattice of filters on L
(i.e. upwards-closed sets closed under meets).

Proof sketch.

Do a non-compact version of the circuit construction on Slide 22. Argue
that arbitrary unions of definable sets are definable and so the resulting
lattice of definable sets is the lattice of filters on L. Carefully compactify in
a way that preserves the collection of definable sets and results in an open
metric. Apply the result from Slide 3.

There are also many examples of semilattices that are not lattices, but the
methods here are far form comprehensive.
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Thank you
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